Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > idd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
idd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 75 ancld 323 ancrd 324 anim12d 333 anim1d 334 anim2d 335 orel2 721 pm2.621 742 orim1d 782 orim2d 783 pm2.63 795 pm2.74 802 simprimdc 854 oplem1 970 equsex 1721 equsexd 1722 r19.36av 2621 r19.44av 2629 r19.45av 2630 reuss 3408 opthpr 3759 relop 4761 swoord2 6543 indpi 7304 lelttr 8008 elnnz 9222 ztri3or0 9254 xrlelttr 9763 icossicc 9917 iocssicc 9918 ioossico 9919 lmconst 13010 cnptopresti 13032 sslm 13041 bj-exlimmp 13804 |
Copyright terms: Public domain | W3C validator |