| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| idd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 728 pm2.621 749 orim1d 789 orim2d 790 pm2.63 802 pm2.74 809 simprimdc 861 oplem1 978 equsex 1752 equsexd 1753 r19.36av 2659 r19.44av 2667 r19.45av 2668 reuss 3462 opthpr 3826 relop 4846 swoord2 6673 indpi 7490 lelttr 8196 elnnz 9417 ztri3or0 9449 xrlelttr 9963 icossicc 10117 iocssicc 10118 ioossico 10119 lmconst 14803 cnptopresti 14825 sslm 14834 bj-exlimmp 15905 |
| Copyright terms: Public domain | W3C validator |