![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > idd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
idd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 726 pm2.621 747 orim1d 787 orim2d 788 pm2.63 800 pm2.74 807 simprimdc 859 oplem1 975 equsex 1728 equsexd 1729 r19.36av 2628 r19.44av 2636 r19.45av 2637 reuss 3417 opthpr 3773 relop 4778 swoord2 6565 indpi 7341 lelttr 8046 elnnz 9263 ztri3or0 9295 xrlelttr 9806 icossicc 9960 iocssicc 9961 ioossico 9962 lmconst 13719 cnptopresti 13741 sslm 13750 bj-exlimmp 14524 |
Copyright terms: Public domain | W3C validator |