| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| idd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 727 pm2.621 748 orim1d 788 orim2d 789 pm2.63 801 pm2.74 808 simprimdc 860 oplem1 977 equsex 1750 equsexd 1751 r19.36av 2656 r19.44av 2664 r19.45av 2665 reuss 3453 opthpr 3812 relop 4827 swoord2 6649 indpi 7454 lelttr 8160 elnnz 9381 ztri3or0 9413 xrlelttr 9927 icossicc 10081 iocssicc 10082 ioossico 10083 lmconst 14659 cnptopresti 14681 sslm 14690 bj-exlimmp 15667 |
| Copyright terms: Public domain | W3C validator |