| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| idd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 731 pm2.621 752 orim1d 792 orim2d 793 pm2.63 805 pm2.74 812 simprimdc 864 oplem1 981 equsex 1774 equsexd 1775 r19.36av 2682 r19.44av 2690 r19.45av 2691 reuss 3485 opthpr 3849 relop 4871 swoord2 6708 indpi 7525 lelttr 8231 elnnz 9452 ztri3or0 9484 xrlelttr 9998 icossicc 10152 iocssicc 10153 ioossico 10154 lmconst 14884 cnptopresti 14906 sslm 14915 bj-exlimmp 16091 |
| Copyright terms: Public domain | W3C validator |