| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| idd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 727 pm2.621 748 orim1d 788 orim2d 789 pm2.63 801 pm2.74 808 simprimdc 860 oplem1 977 equsex 1742 equsexd 1743 r19.36av 2648 r19.44av 2656 r19.45av 2657 reuss 3445 opthpr 3803 relop 4817 swoord2 6631 indpi 7426 lelttr 8132 elnnz 9353 ztri3or0 9385 xrlelttr 9898 icossicc 10052 iocssicc 10053 ioossico 10054 lmconst 14536 cnptopresti 14558 sslm 14567 bj-exlimmp 15499 |
| Copyright terms: Public domain | W3C validator |