| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| idd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 728 pm2.621 749 orim1d 789 orim2d 790 pm2.63 802 pm2.74 809 simprimdc 861 oplem1 978 equsex 1751 equsexd 1752 r19.36av 2657 r19.44av 2665 r19.45av 2666 reuss 3454 opthpr 3813 relop 4828 swoord2 6650 indpi 7455 lelttr 8161 elnnz 9382 ztri3or0 9414 xrlelttr 9928 icossicc 10082 iocssicc 10083 ioossico 10084 lmconst 14688 cnptopresti 14710 sslm 14719 bj-exlimmp 15705 |
| Copyright terms: Public domain | W3C validator |