Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > idd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
idd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 75 ancld 323 ancrd 324 anim12d 333 anim1d 334 anim2d 335 orel2 716 pm2.621 737 orim1d 777 orim2d 778 pm2.63 790 pm2.74 797 simprimdc 845 oplem1 960 equsex 1708 equsexd 1709 r19.36av 2608 r19.44av 2616 r19.45av 2617 reuss 3388 opthpr 3735 relop 4733 swoord2 6503 indpi 7245 lelttr 7948 elnnz 9160 ztri3or0 9192 xrlelttr 9692 icossicc 9846 iocssicc 9847 ioossico 9848 lmconst 12576 cnptopresti 12598 sslm 12607 bj-exlimmp 13303 |
Copyright terms: Public domain | W3C validator |