![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimprcd | Unicode version |
Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
biimpcd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimprcd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biimpcd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5ibrcom 157 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimparc 299 pm5.32 453 oplem1 977 ax11i 1725 equsex 1739 eleq1a 2265 ceqsalg 2788 cgsexg 2795 cgsex2g 2796 cgsex4g 2797 ceqsex 2798 spc2egv 2850 spc3egv 2852 csbiebt 3120 dfiin2g 3945 sotricim 4354 ralxfrALT 4498 iunpw 4511 opelxp 4689 ssrel 4747 ssrel2 4749 ssrelrel 4759 iss 4988 funcnvuni 5323 fun11iun 5521 tfrlem8 6371 eroveu 6680 fundmen 6860 nneneq 6913 fidifsnen 6926 prarloclem5 7560 prarloc 7563 recexprlemss1l 7695 recexprlemss1u 7696 uzin 9625 indstr 9658 elfzmlbp 10198 |
Copyright terms: Public domain | W3C validator |