![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimprcd | Unicode version |
Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
biimpcd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimprcd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biimpcd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5ibrcom 157 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimparc 299 pm5.32 453 oplem1 977 ax11i 1725 equsex 1739 eleq1a 2265 ceqsalg 2788 cgsexg 2795 cgsex2g 2796 cgsex4g 2797 ceqsex 2798 spc2egv 2851 spc3egv 2853 csbiebt 3121 dfiin2g 3946 sotricim 4355 ralxfrALT 4499 iunpw 4512 opelxp 4690 ssrel 4748 ssrel2 4750 ssrelrel 4760 iss 4989 funcnvuni 5324 fun11iun 5522 tfrlem8 6373 eroveu 6682 fundmen 6862 nneneq 6915 fidifsnen 6928 prarloclem5 7562 prarloc 7565 recexprlemss1l 7697 recexprlemss1u 7698 uzin 9628 indstr 9661 elfzmlbp 10201 |
Copyright terms: Public domain | W3C validator |