![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimprcd | Unicode version |
Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
biimpcd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimprcd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biimpcd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5ibrcom 156 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimparc 294 pm5.32 442 oplem1 922 ax11i 1650 equsex 1664 eleq1a 2160 ceqsalg 2648 cgsexg 2655 cgsex2g 2656 cgsex4g 2657 ceqsex 2658 spc2egv 2709 spc3egv 2711 csbiebt 2968 dfiin2g 3769 sotricim 4159 ralxfrALT 4302 iunpw 4315 opelxp 4480 ssrel 4539 ssrel2 4541 ssrelrel 4551 iss 4771 funcnvuni 5096 fun11iun 5287 tfrlem8 6097 eroveu 6397 fundmen 6577 nneneq 6627 fidifsnen 6640 prarloclem5 7113 prarloc 7116 recexprlemss1l 7248 recexprlemss1u 7249 uzin 9105 indstr 9135 elfzmlbp 9597 |
Copyright terms: Public domain | W3C validator |