| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimprcd | Unicode version | ||
| Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 |
|
| Ref | Expression |
|---|---|
| biimprcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | biimpcd.1 |
. 2
| |
| 3 | 1, 2 | syl5ibrcom 157 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimparc 299 pm5.32 453 oplem1 980 ax11i 1740 equsex 1754 eleq1a 2281 ceqsalg 2808 cgsexg 2815 cgsex2g 2816 cgsex4g 2817 ceqsex 2818 spc2egv 2873 spc3egv 2875 csbiebt 3144 dfiin2g 3977 sotricim 4391 ralxfrALT 4535 iunpw 4548 opelxp 4726 ssrel 4784 ssrel2 4786 ssrelrel 4796 iss 5027 funcnvuni 5366 fun11iun 5569 tfrlem8 6434 eroveu 6743 fundmen 6929 nneneq 6986 fidifsnen 7000 prarloclem5 7655 prarloc 7658 recexprlemss1l 7790 recexprlemss1u 7791 uzin 9723 indstr 9756 elfzmlbp 10296 swrdnd 11157 |
| Copyright terms: Public domain | W3C validator |