Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimprcd | Unicode version |
Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
biimpcd.1 |
Ref | Expression |
---|---|
biimprcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | biimpcd.1 | . 2 | |
3 | 1, 2 | syl5ibrcom 156 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimparc 297 pm5.32 449 oplem1 960 ax11i 1694 equsex 1708 eleq1a 2229 ceqsalg 2740 cgsexg 2747 cgsex2g 2748 cgsex4g 2749 ceqsex 2750 spc2egv 2802 spc3egv 2804 csbiebt 3070 dfiin2g 3882 sotricim 4282 ralxfrALT 4425 iunpw 4438 opelxp 4613 ssrel 4671 ssrel2 4673 ssrelrel 4683 iss 4909 funcnvuni 5236 fun11iun 5432 tfrlem8 6259 eroveu 6564 fundmen 6744 nneneq 6795 fidifsnen 6808 prarloclem5 7403 prarloc 7406 recexprlemss1l 7538 recexprlemss1u 7539 uzin 9454 indstr 9487 elfzmlbp 10013 |
Copyright terms: Public domain | W3C validator |