ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  or32 Unicode version

Theorem or32 765
Description: A rearrangement of disjuncts. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
or32  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ( ph  \/  ch )  \/  ps )
)

Proof of Theorem or32
StepHypRef Expression
1 orass 762 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
2 or12 761 . 2  |-  ( (
ph  \/  ( ps  \/  ch ) )  <->  ( ps  \/  ( ph  \/  ch ) ) )
3 orcom 723 . 2  |-  ( ( ps  \/  ( ph  \/  ch ) )  <->  ( ( ph  \/  ch )  \/ 
ps ) )
41, 2, 33bitri 205 1  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ( ph  \/  ch )  \/  ps )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  xrnepnf  9735
  Copyright terms: Public domain W3C validator