Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrnepnf | Unicode version |
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrnepnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.61 789 | . 2 | |
2 | elxr 9733 | . . . 4 | |
3 | df-3or 974 | . . . 4 | |
4 | or32 765 | . . . 4 | |
5 | 2, 3, 4 | 3bitri 205 | . . 3 |
6 | df-ne 2341 | . . 3 | |
7 | 5, 6 | anbi12i 457 | . 2 |
8 | renepnf 7967 | . . . . 5 | |
9 | mnfnepnf 7975 | . . . . . 6 | |
10 | neeq1 2353 | . . . . . 6 | |
11 | 9, 10 | mpbiri 167 | . . . . 5 |
12 | 8, 11 | jaoi 711 | . . . 4 |
13 | 12 | neneqd 2361 | . . 3 |
14 | 13 | pm4.71i 389 | . 2 |
15 | 1, 7, 14 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 703 w3o 972 wceq 1348 wcel 2141 wne 2340 cr 7773 cpnf 7951 cmnf 7952 cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-un 4418 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-pnf 7956 df-mnf 7957 df-xr 7958 |
This theorem is referenced by: xaddnepnf 9815 |
Copyright terms: Public domain | W3C validator |