ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnepnf Unicode version

Theorem xrnepnf 9588
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnepnf  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( A  e.  RR  \/  A  = -oo ) )

Proof of Theorem xrnepnf
StepHypRef Expression
1 pm5.61 783 . 2  |-  ( ( ( ( A  e.  RR  \/  A  = -oo )  \/  A  = +oo )  /\  -.  A  = +oo )  <->  ( ( A  e.  RR  \/  A  = -oo )  /\  -.  A  = +oo ) )
2 elxr 9586 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
3 df-3or 963 . . . 4  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo ) )
4 or32 759 . . . 4  |-  ( ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = -oo )  \/  A  = +oo ) )
52, 3, 43bitri 205 . . 3  |-  ( A  e.  RR*  <->  ( ( A  e.  RR  \/  A  = -oo )  \/  A  = +oo ) )
6 df-ne 2309 . . 3  |-  ( A  =/= +oo  <->  -.  A  = +oo )
75, 6anbi12i 455 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( (
( A  e.  RR  \/  A  = -oo )  \/  A  = +oo )  /\  -.  A  = +oo ) )
8 renepnf 7832 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
9 mnfnepnf 7840 . . . . . 6  |- -oo  =/= +oo
10 neeq1 2321 . . . . . 6  |-  ( A  = -oo  ->  ( A  =/= +oo  <-> -oo  =/= +oo )
)
119, 10mpbiri 167 . . . . 5  |-  ( A  = -oo  ->  A  =/= +oo )
128, 11jaoi 705 . . . 4  |-  ( ( A  e.  RR  \/  A  = -oo )  ->  A  =/= +oo )
1312neneqd 2329 . . 3  |-  ( ( A  e.  RR  \/  A  = -oo )  ->  -.  A  = +oo )
1413pm4.71i 388 . 2  |-  ( ( A  e.  RR  \/  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = -oo )  /\  -.  A  = +oo ) )
151, 7, 143bitr4i 211 1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( A  e.  RR  \/  A  = -oo ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 697    \/ w3o 961    = wceq 1331    e. wcel 1480    =/= wne 2308   RRcr 7638   +oocpnf 7816   -oocmnf 7817   RR*cxr 7818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-un 4358  ax-cnex 7730  ax-resscn 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-rex 2422  df-rab 2425  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-uni 3740  df-pnf 7821  df-mnf 7822  df-xr 7823
This theorem is referenced by:  xaddnepnf  9664
  Copyright terms: Public domain W3C validator