| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xrnepnf | Unicode version | ||
| Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| xrnepnf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.61 795 | 
. 2
 | |
| 2 | elxr 9851 | 
. . . 4
 | |
| 3 | df-3or 981 | 
. . . 4
 | |
| 4 | or32 771 | 
. . . 4
 | |
| 5 | 2, 3, 4 | 3bitri 206 | 
. . 3
 | 
| 6 | df-ne 2368 | 
. . 3
 | |
| 7 | 5, 6 | anbi12i 460 | 
. 2
 | 
| 8 | renepnf 8074 | 
. . . . 5
 | |
| 9 | mnfnepnf 8082 | 
. . . . . 6
 | |
| 10 | neeq1 2380 | 
. . . . . 6
 | |
| 11 | 9, 10 | mpbiri 168 | 
. . . . 5
 | 
| 12 | 8, 11 | jaoi 717 | 
. . . 4
 | 
| 13 | 12 | neneqd 2388 | 
. . 3
 | 
| 14 | 13 | pm4.71i 391 | 
. 2
 | 
| 15 | 1, 7, 14 | 3bitr4i 212 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-un 4468 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-pnf 8063 df-mnf 8064 df-xr 8065 | 
| This theorem is referenced by: xaddnepnf 9933 | 
| Copyright terms: Public domain | W3C validator |