Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrnepnf | Unicode version |
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrnepnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.61 784 | . 2 | |
2 | elxr 9712 | . . . 4 | |
3 | df-3or 969 | . . . 4 | |
4 | or32 760 | . . . 4 | |
5 | 2, 3, 4 | 3bitri 205 | . . 3 |
6 | df-ne 2337 | . . 3 | |
7 | 5, 6 | anbi12i 456 | . 2 |
8 | renepnf 7946 | . . . . 5 | |
9 | mnfnepnf 7954 | . . . . . 6 | |
10 | neeq1 2349 | . . . . . 6 | |
11 | 9, 10 | mpbiri 167 | . . . . 5 |
12 | 8, 11 | jaoi 706 | . . . 4 |
13 | 12 | neneqd 2357 | . . 3 |
14 | 13 | pm4.71i 389 | . 2 |
15 | 1, 7, 14 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 698 w3o 967 wceq 1343 wcel 2136 wne 2336 cr 7752 cpnf 7930 cmnf 7931 cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-pnf 7935 df-mnf 7936 df-xr 7937 |
This theorem is referenced by: xaddnepnf 9794 |
Copyright terms: Public domain | W3C validator |