ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnepnf Unicode version

Theorem xrnepnf 9810
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnepnf  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( A  e.  RR  \/  A  = -oo ) )

Proof of Theorem xrnepnf
StepHypRef Expression
1 pm5.61 795 . 2  |-  ( ( ( ( A  e.  RR  \/  A  = -oo )  \/  A  = +oo )  /\  -.  A  = +oo )  <->  ( ( A  e.  RR  \/  A  = -oo )  /\  -.  A  = +oo ) )
2 elxr 9808 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
3 df-3or 981 . . . 4  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo ) )
4 or32 771 . . . 4  |-  ( ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = -oo )  \/  A  = +oo ) )
52, 3, 43bitri 206 . . 3  |-  ( A  e.  RR*  <->  ( ( A  e.  RR  \/  A  = -oo )  \/  A  = +oo ) )
6 df-ne 2361 . . 3  |-  ( A  =/= +oo  <->  -.  A  = +oo )
75, 6anbi12i 460 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( (
( A  e.  RR  \/  A  = -oo )  \/  A  = +oo )  /\  -.  A  = +oo ) )
8 renepnf 8036 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
9 mnfnepnf 8044 . . . . . 6  |- -oo  =/= +oo
10 neeq1 2373 . . . . . 6  |-  ( A  = -oo  ->  ( A  =/= +oo  <-> -oo  =/= +oo )
)
119, 10mpbiri 168 . . . . 5  |-  ( A  = -oo  ->  A  =/= +oo )
128, 11jaoi 717 . . . 4  |-  ( ( A  e.  RR  \/  A  = -oo )  ->  A  =/= +oo )
1312neneqd 2381 . . 3  |-  ( ( A  e.  RR  \/  A  = -oo )  ->  -.  A  = +oo )
1413pm4.71i 391 . 2  |-  ( ( A  e.  RR  \/  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = -oo )  /\  -.  A  = +oo ) )
151, 7, 143bitr4i 212 1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( A  e.  RR  \/  A  = -oo ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2160    =/= wne 2360   RRcr 7841   +oocpnf 8020   -oocmnf 8021   RR*cxr 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-un 4451  ax-cnex 7933  ax-resscn 7934
This theorem depends on definitions:  df-bi 117  df-3or 981  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-pnf 8025  df-mnf 8026  df-xr 8027
This theorem is referenced by:  xaddnepnf  9890
  Copyright terms: Public domain W3C validator