| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrnepnf | Unicode version | ||
| Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrnepnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.61 799 |
. 2
| |
| 2 | elxr 9972 |
. . . 4
| |
| 3 | df-3or 1003 |
. . . 4
| |
| 4 | or32 775 |
. . . 4
| |
| 5 | 2, 3, 4 | 3bitri 206 |
. . 3
|
| 6 | df-ne 2401 |
. . 3
| |
| 7 | 5, 6 | anbi12i 460 |
. 2
|
| 8 | renepnf 8194 |
. . . . 5
| |
| 9 | mnfnepnf 8202 |
. . . . . 6
| |
| 10 | neeq1 2413 |
. . . . . 6
| |
| 11 | 9, 10 | mpbiri 168 |
. . . . 5
|
| 12 | 8, 11 | jaoi 721 |
. . . 4
|
| 13 | 12 | neneqd 2421 |
. . 3
|
| 14 | 13 | pm4.71i 391 |
. 2
|
| 15 | 1, 7, 14 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-un 4524 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-pnf 8183 df-mnf 8184 df-xr 8185 |
| This theorem is referenced by: xaddnepnf 10054 |
| Copyright terms: Public domain | W3C validator |