Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orcom | Unicode version |
Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
Ref | Expression |
---|---|
orcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 717 | . 2 | |
2 | pm1.4 717 | . 2 | |
3 | 1, 2 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orcomd 719 orbi1i 753 orass 757 or32 760 or42 762 orbi1d 781 pm5.61 784 oranabs 805 ordir 807 pm2.1dc 827 notnotrdc 833 dcnnOLD 839 pm5.17dc 894 pm5.7dc 944 dn1dc 950 pm5.75 952 3orrot 974 3orcomb 977 excxor 1368 xorcom 1378 19.33b2 1617 nf4dc 1658 nf4r 1659 19.31r 1669 dveeq2 1803 sbequilem 1826 dvelimALT 1998 dvelimfv 1999 dvelimor 2006 eueq2dc 2899 uncom 3266 reuun2 3405 prel12 3751 exmid01 4177 exmidsssnc 4182 ordtriexmid 4498 ordtri2orexmid 4500 ontr2exmid 4502 onsucsssucexmid 4504 ordsoexmid 4539 ordtri2or2exmid 4548 cnvsom 5147 fununi 5256 frec0g 6365 frecabcl 6367 frecsuclem 6374 swoer 6529 inffiexmid 6872 exmidontriimlem1 7177 enq0tr 7375 letr 7981 reapmul1 8493 reapneg 8495 reapcotr 8496 remulext1 8497 apsym 8504 mulext1 8510 elznn0nn 9205 elznn0 9206 zapne 9265 nneoor 9293 nn01to3 9555 ltxr 9711 xrletr 9744 maxclpr 11164 minclpr 11178 odd2np1lem 11809 lcmcom 11996 dvdsprime 12054 coprm 12076 bdbl 13143 cos11 13414 lgsdir2lem4 13572 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |