![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orcom | Unicode version |
Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
Ref | Expression |
---|---|
orcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 728 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm1.4 728 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orcomd 730 orbi1i 764 orass 768 or32 771 or42 773 orbi1d 792 pm5.61 795 oranabs 816 ordir 818 pm2.1dc 838 notnotrdc 844 dcnnOLD 850 pm5.17dc 905 pm5.7dc 956 dn1dc 962 pm5.75 964 3orrot 986 3orcomb 989 excxor 1389 xorcom 1399 19.33b2 1640 nf4dc 1681 nf4r 1682 19.31r 1692 dveeq2 1826 sbequilem 1849 dvelimALT 2026 dvelimfv 2027 dvelimor 2034 eueq2dc 2933 uncom 3303 reuun2 3442 prel12 3797 exmid01 4227 exmidsssnc 4232 ordtriexmid 4553 ordtri2orexmid 4555 ontr2exmid 4557 onsucsssucexmid 4559 ordsoexmid 4594 ordtri2or2exmid 4603 cnvsom 5209 fununi 5322 frec0g 6450 frecabcl 6452 frecsuclem 6459 swoer 6615 inffiexmid 6962 exmidontriimlem1 7281 enq0tr 7494 letr 8102 reapmul1 8614 reapneg 8616 reapcotr 8617 remulext1 8618 apsym 8625 mulext1 8631 elznn0nn 9331 elznn0 9332 zapne 9391 nneoor 9419 nn01to3 9682 ltxr 9841 xrletr 9874 maxclpr 11366 minclpr 11380 odd2np1lem 12013 lcmcom 12202 dvdsprime 12260 coprm 12282 opprdomnbg 13770 bdbl 14671 cos11 14988 lgsdir2lem4 15147 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |