ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orass Unicode version

Theorem orass 768
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
orass  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )

Proof of Theorem orass
StepHypRef Expression
1 orcom 729 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ch  \/  ( ph  \/  ps ) ) )
2 or12 767 . 2  |-  ( ( ch  \/  ( ph  \/  ps ) )  <->  ( ph  \/  ( ch  \/  ps ) ) )
3 orcom 729 . . 3  |-  ( ( ch  \/  ps )  <->  ( ps  \/  ch )
)
43orbi2i 763 . 2  |-  ( (
ph  \/  ( ch  \/  ps ) )  <->  ( ph  \/  ( ps  \/  ch ) ) )
51, 2, 43bitri 206 1  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm2.31  769  pm2.32  770  or32  771  or4  772  3orass  983  dveeq2  1826  dveeq2or  1827  sbequilem  1849  dvelimALT  2026  dvelimfv  2027  dvelimor  2034  unass  3316  ltxr  9841  lcmass  12223
  Copyright terms: Public domain W3C validator