| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitri.1 |
|
| 3bitri.2 |
|
| 3bitri.3 |
|
| Ref | Expression |
|---|---|
| 3bitri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.1 |
. 2
| |
| 2 | 3bitri.2 |
. . 3
| |
| 3 | 3bitri.3 |
. . 3
| |
| 4 | 2, 3 | bitri 184 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 an32 562 orbi1i 768 orass 772 or32 775 dn1dc 966 an6 1355 excxor 1420 trubifal 1458 truxortru 1461 truxorfal 1462 falxortru 1463 falxorfal 1464 alrot4 1532 excom13 1735 sborv 1937 3exdistr 1962 4exdistr 1963 eeeanv 1984 ee4anv 1985 ee8anv 1986 sb3an 2009 sb9 2030 sbnf2 2032 sbco4 2058 2exsb 2060 sb8eu 2090 sb8euh 2100 sbmo 2137 2eu4 2171 2eu7 2172 elsb1 2207 elsb2 2208 r19.26-3 2661 rexcom13 2697 cbvreu 2763 ceqsex2 2841 ceqsex4v 2844 spc3gv 2896 ralrab2 2968 rexrab2 2970 reu2 2991 rmo4 2996 reu8 2999 rmo3f 3000 sbc3an 3090 reu8nf 3110 rmo3 3121 ssalel 3212 ss2rab 3300 rabss 3301 ssrab 3302 dfdif3 3314 undi 3452 undif3ss 3465 difin2 3466 dfnul2 3493 disj 3540 disjsn 3728 snssb 3801 uni0c 3914 ssint 3939 iunss 4006 ssextss 4306 eqvinop 4329 opcom 4337 opeqsn 4339 opeqpr 4340 brabsb 4349 opelopabf 4363 opabm 4369 pofun 4403 sotritrieq 4416 uniuni 4542 ordsucim 4592 opeliunxp 4774 xpiundi 4777 brinxp2 4786 ssrel 4807 reliun 4840 cnvuni 4908 dmopab3 4936 opelres 5010 elres 5041 elsnres 5042 intirr 5115 ssrnres 5171 dminxp 5173 dfrel4v 5180 dmsnm 5194 rnco 5235 sb8iota 5286 dffun2 5328 dffun4f 5334 funco 5358 funcnveq 5384 fun11 5388 isarep1 5407 dff1o4 5580 dff1o6 5900 oprabid 6033 mpo2eqb 6114 ralrnmpo 6119 rexrnmpo 6120 opabex3d 6266 opabex3 6267 xporderlem 6377 f1od2 6381 tfr0dm 6468 tfrexlem 6480 frec0g 6543 nnaord 6655 ecid 6745 mptelixpg 6881 elixpsn 6882 mapsnen 6964 xpsnen 6980 xpcomco 6985 xpassen 6989 exmidontriimlem3 7405 nqnq0 7628 opelreal 8014 pitoregt0 8036 elnn0 9371 elxnn0 9434 elxr 9972 xrnepnf 9974 elfzuzb 10215 4fvwrd4 10336 elfzo2 10346 swrdnd 11191 resqrexlemsqa 11535 fisumcom2 11949 modfsummod 11969 fprodcom2fi 12137 nnwosdc 12560 isprm2 12639 isprm4 12641 pythagtriplem2 12789 4sqlem12 12925 isnsg2 13740 isnsg4 13749 dfrhm2 14118 cnfldui 14553 ntreq0 14806 txbas 14932 metrest 15180 2lgslem4 15782 umgr2edg1 16007 |
| Copyright terms: Public domain | W3C validator |