| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitri.1 |
|
| 3bitri.2 |
|
| 3bitri.3 |
|
| Ref | Expression |
|---|---|
| 3bitri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.1 |
. 2
| |
| 2 | 3bitri.2 |
. . 3
| |
| 3 | 3bitri.3 |
. . 3
| |
| 4 | 2, 3 | bitri 184 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 an32 562 orbi1i 765 orass 769 or32 772 dn1dc 963 an6 1334 excxor 1398 trubifal 1436 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 alrot4 1510 excom13 1713 sborv 1915 3exdistr 1940 4exdistr 1941 eeeanv 1962 ee4anv 1963 ee8anv 1964 sb3an 1987 sb9 2008 sbnf2 2010 sbco4 2036 2exsb 2038 sb8eu 2068 sb8euh 2078 sbmo 2115 2eu4 2149 2eu7 2150 elsb1 2185 elsb2 2186 r19.26-3 2638 rexcom13 2674 cbvreu 2740 ceqsex2 2818 ceqsex4v 2821 spc3gv 2873 ralrab2 2945 rexrab2 2947 reu2 2968 rmo4 2973 reu8 2976 rmo3f 2977 sbc3an 3067 reu8nf 3087 rmo3 3098 ssalel 3189 ss2rab 3277 rabss 3278 ssrab 3279 dfdif3 3291 undi 3429 undif3ss 3442 difin2 3443 dfnul2 3470 disj 3517 disjsn 3705 snssb 3777 uni0c 3890 ssint 3915 iunss 3982 ssextss 4282 eqvinop 4305 opcom 4313 opeqsn 4315 opeqpr 4316 brabsb 4325 opelopabf 4339 opabm 4345 pofun 4377 sotritrieq 4390 uniuni 4516 ordsucim 4566 opeliunxp 4748 xpiundi 4751 brinxp2 4760 ssrel 4781 reliun 4814 cnvuni 4882 dmopab3 4910 opelres 4983 elres 5014 elsnres 5015 intirr 5088 ssrnres 5144 dminxp 5146 dfrel4v 5153 dmsnm 5167 rnco 5208 sb8iota 5258 dffun2 5300 dffun4f 5306 funco 5330 funcnveq 5356 fun11 5360 isarep1 5379 dff1o4 5552 dff1o6 5868 oprabid 5999 mpo2eqb 6078 ralrnmpo 6083 rexrnmpo 6084 opabex3d 6229 opabex3 6230 xporderlem 6340 f1od2 6344 tfr0dm 6431 tfrexlem 6443 frec0g 6506 nnaord 6618 ecid 6708 mptelixpg 6844 elixpsn 6845 mapsnen 6927 xpsnen 6941 xpcomco 6946 xpassen 6950 exmidontriimlem3 7366 nqnq0 7589 opelreal 7975 pitoregt0 7997 elnn0 9332 elxnn0 9395 elxr 9933 xrnepnf 9935 elfzuzb 10176 4fvwrd4 10297 elfzo2 10307 swrdnd 11150 resqrexlemsqa 11450 fisumcom2 11864 modfsummod 11884 fprodcom2fi 12052 nnwosdc 12475 isprm2 12554 isprm4 12556 pythagtriplem2 12704 4sqlem12 12840 isnsg2 13654 isnsg4 13663 dfrhm2 14031 cnfldui 14466 ntreq0 14719 txbas 14845 metrest 15093 2lgslem4 15695 |
| Copyright terms: Public domain | W3C validator |