| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitri.1 |
|
| 3bitri.2 |
|
| 3bitri.3 |
|
| Ref | Expression |
|---|---|
| 3bitri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.1 |
. 2
| |
| 2 | 3bitri.2 |
. . 3
| |
| 3 | 3bitri.3 |
. . 3
| |
| 4 | 2, 3 | bitri 184 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 an32 562 orbi1i 765 orass 769 or32 772 dn1dc 963 an6 1334 excxor 1398 trubifal 1436 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 alrot4 1509 excom13 1712 sborv 1914 3exdistr 1939 4exdistr 1940 eeeanv 1961 ee4anv 1962 ee8anv 1963 sb3an 1986 sb9 2007 sbnf2 2009 sbco4 2035 2exsb 2037 sb8eu 2067 sb8euh 2077 sbmo 2113 2eu4 2147 2eu7 2148 elsb1 2183 elsb2 2184 r19.26-3 2636 rexcom13 2672 cbvreu 2736 ceqsex2 2813 ceqsex4v 2816 spc3gv 2866 ralrab2 2938 rexrab2 2940 reu2 2961 rmo4 2966 reu8 2969 rmo3f 2970 sbc3an 3060 rmo3 3090 ssalel 3181 ss2rab 3269 rabss 3270 ssrab 3271 dfdif3 3283 undi 3421 undif3ss 3434 difin2 3435 dfnul2 3462 disj 3509 disjsn 3695 snssb 3766 uni0c 3876 ssint 3901 iunss 3968 ssextss 4265 eqvinop 4288 opcom 4296 opeqsn 4298 opeqpr 4299 brabsb 4308 opelopabf 4322 opabm 4328 pofun 4360 sotritrieq 4373 uniuni 4499 ordsucim 4549 opeliunxp 4731 xpiundi 4734 brinxp2 4743 ssrel 4764 reliun 4797 cnvuni 4865 dmopab3 4892 opelres 4965 elres 4996 elsnres 4997 intirr 5070 ssrnres 5126 dminxp 5128 dfrel4v 5135 dmsnm 5149 rnco 5190 sb8iota 5240 dffun2 5282 dffun4f 5288 funco 5312 funcnveq 5338 fun11 5342 isarep1 5361 dff1o4 5532 dff1o6 5847 oprabid 5978 mpo2eqb 6057 ralrnmpo 6062 rexrnmpo 6063 opabex3d 6208 opabex3 6209 xporderlem 6319 f1od2 6323 tfr0dm 6410 tfrexlem 6422 frec0g 6485 nnaord 6597 ecid 6687 mptelixpg 6823 elixpsn 6824 mapsnen 6905 xpsnen 6918 xpcomco 6923 xpassen 6927 exmidontriimlem3 7337 nqnq0 7556 opelreal 7942 pitoregt0 7964 elnn0 9299 elxnn0 9362 elxr 9900 xrnepnf 9902 elfzuzb 10143 4fvwrd4 10264 elfzo2 10274 swrdnd 11115 resqrexlemsqa 11368 fisumcom2 11782 modfsummod 11802 fprodcom2fi 11970 nnwosdc 12393 isprm2 12472 isprm4 12474 pythagtriplem2 12622 4sqlem12 12758 isnsg2 13572 isnsg4 13581 dfrhm2 13949 cnfldui 14384 ntreq0 14637 txbas 14763 metrest 15011 2lgslem4 15613 |
| Copyright terms: Public domain | W3C validator |