Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitri | Unicode version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitri.1 | |
3bitri.2 | |
3bitri.3 |
Ref | Expression |
---|---|
3bitri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.1 | . 2 | |
2 | 3bitri.2 | . . 3 | |
3 | 3bitri.3 | . . 3 | |
4 | 2, 3 | bitri 183 | . 2 |
5 | 1, 4 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi1i 227 an32 557 orbi1i 758 orass 762 or32 765 dcan 928 dn1dc 955 an6 1316 excxor 1373 trubifal 1411 truxortru 1414 truxorfal 1415 falxortru 1416 falxorfal 1417 alrot4 1479 excom13 1682 sborv 1883 3exdistr 1908 4exdistr 1909 eeeanv 1926 ee4anv 1927 ee8anv 1928 sb3an 1951 sb9 1972 sbnf2 1974 sbco4 2000 2exsb 2002 sb8eu 2032 sb8euh 2042 sbmo 2078 2eu4 2112 2eu7 2113 elsb1 2148 elsb2 2149 r19.26-3 2600 rexcom13 2635 cbvreu 2694 ceqsex2 2770 ceqsex4v 2773 spc3gv 2823 ralrab2 2895 rexrab2 2897 reu2 2918 rmo4 2923 reu8 2926 rmo3f 2927 sbc3an 3016 rmo3 3046 dfss2 3136 ss2rab 3223 rabss 3224 ssrab 3225 dfdif3 3237 undi 3375 undif3ss 3388 difin2 3389 dfnul2 3416 disj 3463 disjsn 3645 uni0c 3822 ssint 3847 iunss 3914 ssextss 4205 eqvinop 4228 opcom 4235 opeqsn 4237 opeqpr 4238 brabsb 4246 opelopabf 4259 opabm 4265 pofun 4297 sotritrieq 4310 uniuni 4436 ordsucim 4484 opeliunxp 4666 xpiundi 4669 brinxp2 4678 ssrel 4699 reliun 4732 cnvuni 4797 dmopab3 4824 opelres 4896 elres 4927 elsnres 4928 intirr 4997 ssrnres 5053 dminxp 5055 dfrel4v 5062 dmsnm 5076 rnco 5117 sb8iota 5167 dffun2 5208 dffun4f 5214 funco 5238 funcnveq 5261 fun11 5265 isarep1 5284 dff1o4 5450 dff1o6 5755 oprabid 5885 mpo2eqb 5962 ralrnmpo 5967 rexrnmpo 5968 opabex3d 6100 opabex3 6101 xporderlem 6210 f1od2 6214 tfr0dm 6301 tfrexlem 6313 frec0g 6376 nnaord 6488 ecid 6576 mptelixpg 6712 elixpsn 6713 mapsnen 6789 xpsnen 6799 xpcomco 6804 xpassen 6808 exmidontriimlem3 7200 nqnq0 7403 opelreal 7789 pitoregt0 7811 elnn0 9137 elxnn0 9200 elxr 9733 xrnepnf 9735 elfzuzb 9975 4fvwrd4 10096 elfzo2 10106 resqrexlemsqa 10988 fisumcom2 11401 modfsummod 11421 fprodcom2fi 11589 nnwosdc 11994 isprm2 12071 isprm4 12073 pythagtriplem2 12220 ntreq0 12926 txbas 13052 metrest 13300 |
Copyright terms: Public domain | W3C validator |