Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitri | Unicode version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitri.1 | |
3bitri.2 | |
3bitri.3 |
Ref | Expression |
---|---|
3bitri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.1 | . 2 | |
2 | 3bitri.2 | . . 3 | |
3 | 3bitri.3 | . . 3 | |
4 | 2, 3 | bitri 184 | . 2 |
5 | 1, 4 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1i 228 an32 562 orbi1i 763 orass 767 or32 770 dcan 933 dn1dc 960 an6 1321 excxor 1378 trubifal 1416 truxortru 1419 truxorfal 1420 falxortru 1421 falxorfal 1422 alrot4 1484 excom13 1687 sborv 1888 3exdistr 1913 4exdistr 1914 eeeanv 1931 ee4anv 1932 ee8anv 1933 sb3an 1956 sb9 1977 sbnf2 1979 sbco4 2005 2exsb 2007 sb8eu 2037 sb8euh 2047 sbmo 2083 2eu4 2117 2eu7 2118 elsb1 2153 elsb2 2154 r19.26-3 2605 rexcom13 2640 cbvreu 2699 ceqsex2 2775 ceqsex4v 2778 spc3gv 2828 ralrab2 2900 rexrab2 2902 reu2 2923 rmo4 2928 reu8 2931 rmo3f 2932 sbc3an 3022 rmo3 3052 dfss2 3142 ss2rab 3229 rabss 3230 ssrab 3231 dfdif3 3243 undi 3381 undif3ss 3394 difin2 3395 dfnul2 3422 disj 3469 disjsn 3651 snssb 3722 uni0c 3831 ssint 3856 iunss 3923 ssextss 4214 eqvinop 4237 opcom 4244 opeqsn 4246 opeqpr 4247 brabsb 4255 opelopabf 4268 opabm 4274 pofun 4306 sotritrieq 4319 uniuni 4445 ordsucim 4493 opeliunxp 4675 xpiundi 4678 brinxp2 4687 ssrel 4708 reliun 4741 cnvuni 4806 dmopab3 4833 opelres 4905 elres 4936 elsnres 4937 intirr 5007 ssrnres 5063 dminxp 5065 dfrel4v 5072 dmsnm 5086 rnco 5127 sb8iota 5177 dffun2 5218 dffun4f 5224 funco 5248 funcnveq 5271 fun11 5275 isarep1 5294 dff1o4 5461 dff1o6 5767 oprabid 5897 mpo2eqb 5974 ralrnmpo 5979 rexrnmpo 5980 opabex3d 6112 opabex3 6113 xporderlem 6222 f1od2 6226 tfr0dm 6313 tfrexlem 6325 frec0g 6388 nnaord 6500 ecid 6588 mptelixpg 6724 elixpsn 6725 mapsnen 6801 xpsnen 6811 xpcomco 6816 xpassen 6820 exmidontriimlem3 7212 nqnq0 7415 opelreal 7801 pitoregt0 7823 elnn0 9151 elxnn0 9214 elxr 9747 xrnepnf 9749 elfzuzb 9989 4fvwrd4 10110 elfzo2 10120 resqrexlemsqa 11001 fisumcom2 11414 modfsummod 11434 fprodcom2fi 11602 nnwosdc 12007 isprm2 12084 isprm4 12086 pythagtriplem2 12233 ntreq0 13203 txbas 13329 metrest 13577 |
Copyright terms: Public domain | W3C validator |