| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitri.1 |
|
| 3bitri.2 |
|
| 3bitri.3 |
|
| Ref | Expression |
|---|---|
| 3bitri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.1 |
. 2
| |
| 2 | 3bitri.2 |
. . 3
| |
| 3 | 3bitri.3 |
. . 3
| |
| 4 | 2, 3 | bitri 184 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 an32 562 orbi1i 764 orass 768 or32 771 dn1dc 962 an6 1332 excxor 1389 trubifal 1427 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 alrot4 1500 excom13 1703 sborv 1905 3exdistr 1930 4exdistr 1931 eeeanv 1952 ee4anv 1953 ee8anv 1954 sb3an 1977 sb9 1998 sbnf2 2000 sbco4 2026 2exsb 2028 sb8eu 2058 sb8euh 2068 sbmo 2104 2eu4 2138 2eu7 2139 elsb1 2174 elsb2 2175 r19.26-3 2627 rexcom13 2663 cbvreu 2727 ceqsex2 2804 ceqsex4v 2807 spc3gv 2857 ralrab2 2929 rexrab2 2931 reu2 2952 rmo4 2957 reu8 2960 rmo3f 2961 sbc3an 3051 rmo3 3081 dfss2 3172 ss2rab 3259 rabss 3260 ssrab 3261 dfdif3 3273 undi 3411 undif3ss 3424 difin2 3425 dfnul2 3452 disj 3499 disjsn 3684 snssb 3755 uni0c 3865 ssint 3890 iunss 3957 ssextss 4253 eqvinop 4276 opcom 4283 opeqsn 4285 opeqpr 4286 brabsb 4295 opelopabf 4309 opabm 4315 pofun 4347 sotritrieq 4360 uniuni 4486 ordsucim 4536 opeliunxp 4718 xpiundi 4721 brinxp2 4730 ssrel 4751 reliun 4784 cnvuni 4852 dmopab3 4879 opelres 4951 elres 4982 elsnres 4983 intirr 5056 ssrnres 5112 dminxp 5114 dfrel4v 5121 dmsnm 5135 rnco 5176 sb8iota 5226 dffun2 5268 dffun4f 5274 funco 5298 funcnveq 5321 fun11 5325 isarep1 5344 dff1o4 5512 dff1o6 5823 oprabid 5954 mpo2eqb 6032 ralrnmpo 6037 rexrnmpo 6038 opabex3d 6178 opabex3 6179 xporderlem 6289 f1od2 6293 tfr0dm 6380 tfrexlem 6392 frec0g 6455 nnaord 6567 ecid 6657 mptelixpg 6793 elixpsn 6794 mapsnen 6870 xpsnen 6880 xpcomco 6885 xpassen 6889 exmidontriimlem3 7290 nqnq0 7508 opelreal 7894 pitoregt0 7916 elnn0 9251 elxnn0 9314 elxr 9851 xrnepnf 9853 elfzuzb 10094 4fvwrd4 10215 elfzo2 10225 resqrexlemsqa 11189 fisumcom2 11603 modfsummod 11623 fprodcom2fi 11791 nnwosdc 12206 isprm2 12285 isprm4 12287 pythagtriplem2 12435 4sqlem12 12571 isnsg2 13333 isnsg4 13342 dfrhm2 13710 cnfldui 14145 ntreq0 14368 txbas 14494 metrest 14742 2lgslem4 15344 |
| Copyright terms: Public domain | W3C validator |