![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitri | Unicode version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitri.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitri.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitri.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitri |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitri.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3bitri.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitri 184 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1i 228 an32 562 orbi1i 764 orass 768 or32 771 dn1dc 962 an6 1332 excxor 1389 trubifal 1427 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 alrot4 1497 excom13 1700 sborv 1902 3exdistr 1927 4exdistr 1928 eeeanv 1949 ee4anv 1950 ee8anv 1951 sb3an 1974 sb9 1995 sbnf2 1997 sbco4 2023 2exsb 2025 sb8eu 2055 sb8euh 2065 sbmo 2101 2eu4 2135 2eu7 2136 elsb1 2171 elsb2 2172 r19.26-3 2624 rexcom13 2660 cbvreu 2724 ceqsex2 2801 ceqsex4v 2804 spc3gv 2854 ralrab2 2926 rexrab2 2928 reu2 2949 rmo4 2954 reu8 2957 rmo3f 2958 sbc3an 3048 rmo3 3078 dfss2 3169 ss2rab 3256 rabss 3257 ssrab 3258 dfdif3 3270 undi 3408 undif3ss 3421 difin2 3422 dfnul2 3449 disj 3496 disjsn 3681 snssb 3752 uni0c 3862 ssint 3887 iunss 3954 ssextss 4250 eqvinop 4273 opcom 4280 opeqsn 4282 opeqpr 4283 brabsb 4292 opelopabf 4306 opabm 4312 pofun 4344 sotritrieq 4357 uniuni 4483 ordsucim 4533 opeliunxp 4715 xpiundi 4718 brinxp2 4727 ssrel 4748 reliun 4781 cnvuni 4849 dmopab3 4876 opelres 4948 elres 4979 elsnres 4980 intirr 5053 ssrnres 5109 dminxp 5111 dfrel4v 5118 dmsnm 5132 rnco 5173 sb8iota 5223 dffun2 5265 dffun4f 5271 funco 5295 funcnveq 5318 fun11 5322 isarep1 5341 dff1o4 5509 dff1o6 5820 oprabid 5951 mpo2eqb 6029 ralrnmpo 6034 rexrnmpo 6035 opabex3d 6175 opabex3 6176 xporderlem 6286 f1od2 6290 tfr0dm 6377 tfrexlem 6389 frec0g 6452 nnaord 6564 ecid 6654 mptelixpg 6790 elixpsn 6791 mapsnen 6867 xpsnen 6877 xpcomco 6882 xpassen 6886 exmidontriimlem3 7285 nqnq0 7503 opelreal 7889 pitoregt0 7911 elnn0 9245 elxnn0 9308 elxr 9845 xrnepnf 9847 elfzuzb 10088 4fvwrd4 10209 elfzo2 10219 resqrexlemsqa 11171 fisumcom2 11584 modfsummod 11604 fprodcom2fi 11772 nnwosdc 12179 isprm2 12258 isprm4 12260 pythagtriplem2 12407 4sqlem12 12543 isnsg2 13276 isnsg4 13285 dfrhm2 13653 cnfldui 14088 ntreq0 14311 txbas 14437 metrest 14685 2lgslem4 15260 |
Copyright terms: Public domain | W3C validator |