| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitri.1 |
|
| 3bitri.2 |
|
| 3bitri.3 |
|
| Ref | Expression |
|---|---|
| 3bitri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.1 |
. 2
| |
| 2 | 3bitri.2 |
. . 3
| |
| 3 | 3bitri.3 |
. . 3
| |
| 4 | 2, 3 | bitri 184 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 an32 562 orbi1i 765 orass 769 or32 772 dn1dc 963 an6 1334 excxor 1398 trubifal 1436 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 alrot4 1509 excom13 1712 sborv 1914 3exdistr 1939 4exdistr 1940 eeeanv 1961 ee4anv 1962 ee8anv 1963 sb3an 1986 sb9 2007 sbnf2 2009 sbco4 2035 2exsb 2037 sb8eu 2067 sb8euh 2077 sbmo 2113 2eu4 2147 2eu7 2148 elsb1 2183 elsb2 2184 r19.26-3 2636 rexcom13 2672 cbvreu 2736 ceqsex2 2813 ceqsex4v 2816 spc3gv 2866 ralrab2 2938 rexrab2 2940 reu2 2961 rmo4 2966 reu8 2969 rmo3f 2970 sbc3an 3060 rmo3 3090 ssalel 3181 ss2rab 3269 rabss 3270 ssrab 3271 dfdif3 3283 undi 3421 undif3ss 3434 difin2 3435 dfnul2 3462 disj 3509 disjsn 3695 snssb 3766 uni0c 3876 ssint 3901 iunss 3968 ssextss 4264 eqvinop 4287 opcom 4295 opeqsn 4297 opeqpr 4298 brabsb 4307 opelopabf 4321 opabm 4327 pofun 4359 sotritrieq 4372 uniuni 4498 ordsucim 4548 opeliunxp 4730 xpiundi 4733 brinxp2 4742 ssrel 4763 reliun 4796 cnvuni 4864 dmopab3 4891 opelres 4964 elres 4995 elsnres 4996 intirr 5069 ssrnres 5125 dminxp 5127 dfrel4v 5134 dmsnm 5148 rnco 5189 sb8iota 5239 dffun2 5281 dffun4f 5287 funco 5311 funcnveq 5337 fun11 5341 isarep1 5360 dff1o4 5530 dff1o6 5845 oprabid 5976 mpo2eqb 6055 ralrnmpo 6060 rexrnmpo 6061 opabex3d 6206 opabex3 6207 xporderlem 6317 f1od2 6321 tfr0dm 6408 tfrexlem 6420 frec0g 6483 nnaord 6595 ecid 6685 mptelixpg 6821 elixpsn 6822 mapsnen 6903 xpsnen 6916 xpcomco 6921 xpassen 6925 exmidontriimlem3 7335 nqnq0 7554 opelreal 7940 pitoregt0 7962 elnn0 9297 elxnn0 9360 elxr 9898 xrnepnf 9900 elfzuzb 10141 4fvwrd4 10262 elfzo2 10272 swrdnd 11112 resqrexlemsqa 11335 fisumcom2 11749 modfsummod 11769 fprodcom2fi 11937 nnwosdc 12360 isprm2 12439 isprm4 12441 pythagtriplem2 12589 4sqlem12 12725 isnsg2 13539 isnsg4 13548 dfrhm2 13916 cnfldui 14351 ntreq0 14604 txbas 14730 metrest 14978 2lgslem4 15580 |
| Copyright terms: Public domain | W3C validator |