![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitri | Unicode version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitri.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitri.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitri.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitri |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitri.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3bitri.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitri 183 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitri 183 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi1i 227 an32 532 orbi1i 721 orass 725 or32 728 dcan 886 dn1dc 912 an6 1267 excxor 1324 trubifal 1362 truxortru 1365 truxorfal 1366 falxortru 1367 falxorfal 1368 alrot4 1430 excom13 1635 sborv 1829 3exdistr 1852 4exdistr 1853 eeeanv 1868 ee4anv 1869 ee8anv 1870 sb3an 1892 elsb3 1912 elsb4 1913 sb9 1915 sbnf2 1917 sbco4 1943 2exsb 1945 sb8eu 1973 sb8euh 1983 sbmo 2019 2eu4 2053 2eu7 2054 r19.26-3 2521 rexcom13 2554 cbvreu 2610 ceqsex2 2681 ceqsex4v 2684 spc3gv 2733 ralrab2 2802 rexrab2 2804 reu2 2825 rmo4 2830 reu8 2833 rmo3f 2834 sbc3an 2922 rmo3 2952 dfss2 3036 ss2rab 3120 rabss 3121 ssrab 3122 dfdif3 3133 undi 3271 undif3ss 3284 difin2 3285 dfnul2 3312 disj 3358 disjsn 3532 uni0c 3709 ssint 3734 iunss 3801 ssextss 4080 eqvinop 4103 opcom 4110 opeqsn 4112 opeqpr 4113 brabsb 4121 opelopabf 4134 opabm 4140 pofun 4172 sotritrieq 4185 uniuni 4310 ordsucim 4354 opeliunxp 4532 xpiundi 4535 brinxp2 4544 ssrel 4565 reliun 4598 cnvuni 4663 dmopab3 4690 opelres 4760 elres 4791 elsnres 4792 intirr 4861 ssrnres 4917 dminxp 4919 dfrel4v 4926 dmsnm 4940 rnco 4981 sb8iota 5031 dffun2 5069 dffun4f 5075 funco 5099 funcnveq 5122 fun11 5126 isarep1 5145 dff1o4 5309 dff1o6 5609 oprabid 5735 mpo2eqb 5812 ralrnmpo 5817 rexrnmpo 5818 opabex3d 5950 opabex3 5951 xporderlem 6058 f1od2 6062 tfr0dm 6149 tfrexlem 6161 frec0g 6224 nnaord 6335 ecid 6422 mptelixpg 6558 elixpsn 6559 mapsnen 6635 xpsnen 6644 xpcomco 6649 xpassen 6653 nqnq0 7150 opelreal 7515 pitoregt0 7536 elnn0 8831 elxnn0 8894 elxr 9404 xrnepnf 9406 elfzuzb 9641 4fvwrd4 9758 elfzo2 9768 resqrexlemsqa 10636 fisumcom2 11046 modfsummod 11066 isprm2 11591 isprm4 11593 ntreq0 12083 txbas 12208 metrest 12434 |
Copyright terms: Public domain | W3C validator |