ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orimdidc Unicode version

Theorem orimdidc 911
Description: Disjunction distributes over implication. The forward direction, pm2.76 813, is valid intuitionistically. The reverse direction holds if  ph is decidable, as can be seen at pm2.85dc 910. (Contributed by Jim Kingdon, 1-Apr-2018.)
Assertion
Ref Expression
orimdidc  |-  (DECID  ph  ->  ( ( ph  \/  ( ps  ->  ch ) )  <-> 
( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) ) )

Proof of Theorem orimdidc
StepHypRef Expression
1 pm2.76 813 . 2  |-  ( (
ph  \/  ( ps  ->  ch ) )  -> 
( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) )
2 pm2.85dc 910 . 2  |-  (DECID  ph  ->  ( ( ( ph  \/  ps )  ->  ( ph  \/  ch ) )  -> 
( ph  \/  ( ps  ->  ch ) ) ) )
31, 2impbid2 143 1  |-  (DECID  ph  ->  ( ( ph  \/  ( ps  ->  ch ) )  <-> 
( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  orbididc  959
  Copyright terms: Public domain W3C validator