ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.85dc Unicode version

Theorem pm2.85dc 900
Description: Reverse distribution of disjunction over implication, given decidability. Based on theorem *2.85 of [WhiteheadRussell] p. 108. (Contributed by Jim Kingdon, 1-Apr-2018.)
Assertion
Ref Expression
pm2.85dc  |-  (DECID  ph  ->  ( ( ( ph  \/  ps )  ->  ( ph  \/  ch ) )  -> 
( ph  \/  ( ps  ->  ch ) ) ) )

Proof of Theorem pm2.85dc
StepHypRef Expression
1 df-dc 830 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 orc 707 . . . 4  |-  ( ph  ->  ( ph  \/  ( ps  ->  ch ) ) )
32a1d 22 . . 3  |-  ( ph  ->  ( ( ( ph  \/  ps )  ->  ( ph  \/  ch ) )  ->  ( ph  \/  ( ps  ->  ch )
) ) )
4 olc 706 . . . . . 6  |-  ( ps 
->  ( ph  \/  ps ) )
54imim1i 60 . . . . 5  |-  ( ( ( ph  \/  ps )  ->  ( ph  \/  ch ) )  ->  ( ps  ->  ( ph  \/  ch ) ) )
6 orel1 720 . . . . 5  |-  ( -. 
ph  ->  ( ( ph  \/  ch )  ->  ch ) )
75, 6syl9r 73 . . . 4  |-  ( -. 
ph  ->  ( ( (
ph  \/  ps )  ->  ( ph  \/  ch ) )  ->  ( ps  ->  ch ) ) )
8 olc 706 . . . 4  |-  ( ( ps  ->  ch )  ->  ( ph  \/  ( ps  ->  ch ) ) )
97, 8syl6 33 . . 3  |-  ( -. 
ph  ->  ( ( (
ph  \/  ps )  ->  ( ph  \/  ch ) )  ->  ( ph  \/  ( ps  ->  ch ) ) ) )
103, 9jaoi 711 . 2  |-  ( (
ph  \/  -.  ph )  ->  ( ( ( ph  \/  ps )  ->  ( ph  \/  ch ) )  ->  ( ph  \/  ( ps  ->  ch )
) ) )
111, 10sylbi 120 1  |-  (DECID  ph  ->  ( ( ( ph  \/  ps )  ->  ( ph  \/  ch ) )  -> 
( ph  \/  ( ps  ->  ch ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 703  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830
This theorem is referenced by:  orimdidc  901
  Copyright terms: Public domain W3C validator