Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orimdidc | GIF version |
Description: Disjunction distributes over implication. The forward direction, pm2.76 798, is valid intuitionistically. The reverse direction holds if 𝜑 is decidable, as can be seen at pm2.85dc 891. (Contributed by Jim Kingdon, 1-Apr-2018.) |
Ref | Expression |
---|---|
orimdidc | ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.76 798 | . 2 ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | |
2 | pm2.85dc 891 | . 2 ⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) | |
3 | 1, 2 | impbid2 142 | 1 ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 DECID wdc 820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 821 |
This theorem is referenced by: orbididc 938 |
Copyright terms: Public domain | W3C validator |