| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbididc | Unicode version | ||
| Description: Disjunction distributes over the biconditional, for a decidable proposition. Based on an axiom of system DS in Vladimir Lifschitz, "On calculational proofs" (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384. (Contributed by Jim Kingdon, 2-Apr-2018.) |
| Ref | Expression |
|---|---|
| orbididc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orimdidc 907 |
. . 3
| |
| 2 | orimdidc 907 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | dfbi2 388 |
. . . 4
| |
| 5 | 4 | orbi2i 763 |
. . 3
|
| 6 | ordi 817 |
. . 3
| |
| 7 | 5, 6 | bitri 184 |
. 2
|
| 8 | dfbi2 388 |
. 2
| |
| 9 | 3, 7, 8 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: pm5.7dc 956 |
| Copyright terms: Public domain | W3C validator |