| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.61ddc | Unicode version | ||
| Description: Deduction eliminating a decidable antecedent. (Contributed by Jim Kingdon, 4-May-2018.) |
| Ref | Expression |
|---|---|
| pm2.61ddc.1 |
|
| pm2.61ddc.2 |
|
| Ref | Expression |
|---|---|
| pm2.61ddc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 |
. 2
| |
| 2 | pm2.61ddc.1 |
. . . 4
| |
| 3 | 2 | com12 30 |
. . 3
|
| 4 | pm2.61ddc.2 |
. . . 4
| |
| 5 | 4 | com12 30 |
. . 3
|
| 6 | 3, 5 | jaoi 717 |
. 2
|
| 7 | 1, 6 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: bijadc 883 |
| Copyright terms: Public domain | W3C validator |