ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.61ddc Unicode version

Theorem pm2.61ddc 851
Description: Deduction eliminating a decidable antecedent. (Contributed by Jim Kingdon, 4-May-2018.)
Hypotheses
Ref Expression
pm2.61ddc.1  |-  ( ph  ->  ( ps  ->  ch ) )
pm2.61ddc.2  |-  ( ph  ->  ( -.  ps  ->  ch ) )
Assertion
Ref Expression
pm2.61ddc  |-  (DECID  ps  ->  (
ph  ->  ch ) )

Proof of Theorem pm2.61ddc
StepHypRef Expression
1 df-dc 825 . 2  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
2 pm2.61ddc.1 . . . 4  |-  ( ph  ->  ( ps  ->  ch ) )
32com12 30 . . 3  |-  ( ps 
->  ( ph  ->  ch ) )
4 pm2.61ddc.2 . . . 4  |-  ( ph  ->  ( -.  ps  ->  ch ) )
54com12 30 . . 3  |-  ( -. 
ps  ->  ( ph  ->  ch ) )
63, 5jaoi 706 . 2  |-  ( ( ps  \/  -.  ps )  ->  ( ph  ->  ch ) )
71, 6sylbi 120 1  |-  (DECID  ps  ->  (
ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  bijadc  872
  Copyright terms: Public domain W3C validator