| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bijadc | Unicode version | ||
| Description: Combine antecedents into a single biconditional. This inference is reminiscent of jadc 864. (Contributed by Jim Kingdon, 4-May-2018.) | 
| Ref | Expression | 
|---|---|
| bijadc.1 | 
 | 
| bijadc.2 | 
 | 
| Ref | Expression | 
|---|---|
| bijadc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimpr 130 | 
. . 3
 | |
| 2 | bijadc.1 | 
. . 3
 | |
| 3 | 1, 2 | syli 37 | 
. 2
 | 
| 4 | biimp 118 | 
. . . 4
 | |
| 5 | 4 | con3d 632 | 
. . 3
 | 
| 6 | bijadc.2 | 
. . 3
 | |
| 7 | 5, 6 | syli 37 | 
. 2
 | 
| 8 | 3, 7 | pm2.61ddc 862 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 | 
| This theorem is referenced by: 2lgsoddprm 15354 | 
| Copyright terms: Public domain | W3C validator |