| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bijadc | Unicode version | ||
| Description: Combine antecedents into a single biconditional. This inference is reminiscent of jadc 864. (Contributed by Jim Kingdon, 4-May-2018.) |
| Ref | Expression |
|---|---|
| bijadc.1 |
|
| bijadc.2 |
|
| Ref | Expression |
|---|---|
| bijadc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr 130 |
. . 3
| |
| 2 | bijadc.1 |
. . 3
| |
| 3 | 1, 2 | syli 37 |
. 2
|
| 4 | biimp 118 |
. . . 4
| |
| 5 | 4 | con3d 632 |
. . 3
|
| 6 | bijadc.2 |
. . 3
| |
| 7 | 5, 6 | syli 37 |
. 2
|
| 8 | 3, 7 | pm2.61ddc 862 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: 2lgsoddprm 15438 |
| Copyright terms: Public domain | W3C validator |