ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bijadc Unicode version

Theorem bijadc 872
Description: Combine antecedents into a single biconditional. This inference is reminiscent of jadc 853. (Contributed by Jim Kingdon, 4-May-2018.)
Hypotheses
Ref Expression
bijadc.1  |-  ( ph  ->  ( ps  ->  ch ) )
bijadc.2  |-  ( -. 
ph  ->  ( -.  ps  ->  ch ) )
Assertion
Ref Expression
bijadc  |-  (DECID  ps  ->  ( ( ph  <->  ps )  ->  ch ) )

Proof of Theorem bijadc
StepHypRef Expression
1 biimpr 129 . . 3  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
2 bijadc.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syli 37 . 2  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ch ) )
4 biimp 117 . . . 4  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
54con3d 621 . . 3  |-  ( (
ph 
<->  ps )  ->  ( -.  ps  ->  -.  ph )
)
6 bijadc.2 . . 3  |-  ( -. 
ph  ->  ( -.  ps  ->  ch ) )
75, 6syli 37 . 2  |-  ( (
ph 
<->  ps )  ->  ( -.  ps  ->  ch )
)
83, 7pm2.61ddc 851 1  |-  (DECID  ps  ->  ( ( ph  <->  ps )  ->  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator