ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.6dc Unicode version

Theorem pm2.6dc 848
Description: Case elimination for a decidable proposition. Based on theorem *2.6 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 25-Mar-2018.)
Assertion
Ref Expression
pm2.6dc  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( ( ph  ->  ps )  ->  ps ) ) )

Proof of Theorem pm2.6dc
StepHypRef Expression
1 pm2.1dc 823 . . 3  |-  (DECID  ph  ->  ( -.  ph  \/  ph )
)
2 pm3.44 705 . . 3  |-  ( ( ( -.  ph  ->  ps )  /\  ( ph  ->  ps ) )  -> 
( ( -.  ph  \/  ph )  ->  ps ) )
31, 2syl5com 29 . 2  |-  (DECID  ph  ->  ( ( ( -.  ph  ->  ps )  /\  ( ph  ->  ps ) )  ->  ps ) )
43expd 256 1  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( ( ph  ->  ps )  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 821
This theorem is referenced by:  jadc  849  jaddc  850  pm2.61dc  851
  Copyright terms: Public domain W3C validator