Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.6dc | GIF version |
Description: Case elimination for a decidable proposition. Based on theorem *2.6 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 25-Mar-2018.) |
Ref | Expression |
---|---|
pm2.6dc | ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1dc 832 | . . 3 ⊢ (DECID 𝜑 → (¬ 𝜑 ∨ 𝜑)) | |
2 | pm3.44 710 | . . 3 ⊢ (((¬ 𝜑 → 𝜓) ∧ (𝜑 → 𝜓)) → ((¬ 𝜑 ∨ 𝜑) → 𝜓)) | |
3 | 1, 2 | syl5com 29 | . 2 ⊢ (DECID 𝜑 → (((¬ 𝜑 → 𝜓) ∧ (𝜑 → 𝜓)) → 𝜓)) |
4 | 3 | expd 256 | 1 ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 703 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-dc 830 |
This theorem is referenced by: jadc 858 jaddc 859 pm2.61dc 860 |
Copyright terms: Public domain | W3C validator |