ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.6dc GIF version

Theorem pm2.6dc 857
Description: Case elimination for a decidable proposition. Based on theorem *2.6 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 25-Mar-2018.)
Assertion
Ref Expression
pm2.6dc (DECID 𝜑 → ((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓)))

Proof of Theorem pm2.6dc
StepHypRef Expression
1 pm2.1dc 832 . . 3 (DECID 𝜑 → (¬ 𝜑𝜑))
2 pm3.44 710 . . 3 (((¬ 𝜑𝜓) ∧ (𝜑𝜓)) → ((¬ 𝜑𝜑) → 𝜓))
31, 2syl5com 29 . 2 (DECID 𝜑 → (((¬ 𝜑𝜓) ∧ (𝜑𝜓)) → 𝜓))
43expd 256 1 (DECID 𝜑 → ((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830
This theorem is referenced by:  jadc  858  jaddc  859  pm2.61dc  860
  Copyright terms: Public domain W3C validator