| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5com | Unicode version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
| Ref | Expression |
|---|---|
| syl5com.1 |
|
| syl5com.2 |
|
| Ref | Expression |
|---|---|
| syl5com |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5com.1 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | syl5com.2 |
. 2
| |
| 4 | 2, 3 | sylcom 28 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com12 30 syl5 32 pm2.6dc 864 pm5.11dc 911 ax16i 1882 mor 2098 ceqsalg 2805 cgsexg 2812 cgsex2g 2813 cgsex4g 2814 spc2egv 2870 spc2gv 2871 spc3egv 2872 spc3gv 2873 disjne 3522 uneqdifeqim 3554 eqifdc 3616 triun 4171 sucssel 4489 ordsucg 4568 regexmidlem1 4599 relresfld 5231 relcoi1 5233 focdmex 6223 f1dmex 6224 dom2d 6887 findcard 7011 nneo 9511 zeo2 9514 uznfz 10260 difelfzle 10291 ssfzo12 10390 facndiv 10921 swrdswrd 11196 pfxccatin12lem2 11222 pfxccatin12 11224 pfxccat3 11225 fisumcom2 11864 fprodssdc 12016 fprodcom2fi 12052 ndvdssub 12356 bezoutlembi 12441 eucalglt 12494 prmind2 12557 coprm 12581 prmdiveq 12673 mhmlin 13414 issubg2m 13640 nsgbi 13655 issubrng2 14087 issubrg2 14118 lmodlema 14169 rmodislmodlem 14227 rmodislmod 14228 lspsnel6 14285 inopn 14590 basis1 14634 tgss 14650 tgcl 14651 xmeteq0 14946 blssexps 15016 blssex 15017 mopni3 15071 neibl 15078 metss 15081 metcnp3 15098 logbgcd1irr 15554 gausslemma2dlem0i 15649 2lgsoddprmlem3 15703 bj-indsuc 16063 bj-nntrans 16086 |
| Copyright terms: Public domain | W3C validator |