![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5com | Unicode version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
Ref | Expression |
---|---|
syl5com.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5com.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5com |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5com.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1d 22 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl5com.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylcom 28 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com12 30 syl5 32 pm2.6dc 863 pm5.11dc 910 ax16i 1869 mor 2084 ceqsalg 2788 cgsexg 2795 cgsex2g 2796 cgsex4g 2797 spc2egv 2850 spc2gv 2851 spc3egv 2852 spc3gv 2853 disjne 3500 uneqdifeqim 3532 eqifdc 3592 triun 4140 sucssel 4455 ordsucg 4534 regexmidlem1 4565 relresfld 5195 relcoi1 5197 focdmex 6167 f1dmex 6168 dom2d 6827 findcard 6944 nneo 9420 zeo2 9423 uznfz 10169 difelfzle 10200 ssfzo12 10291 facndiv 10810 fisumcom2 11581 fprodssdc 11733 fprodcom2fi 11769 ndvdssub 12071 bezoutlembi 12142 eucalglt 12195 prmind2 12258 coprm 12282 prmdiveq 12374 mhmlin 13039 issubg2m 13259 nsgbi 13274 issubrng2 13706 issubrg2 13737 lmodlema 13788 rmodislmodlem 13846 rmodislmod 13847 lspsnel6 13904 inopn 14171 basis1 14215 tgss 14231 tgcl 14232 xmeteq0 14527 blssexps 14597 blssex 14598 mopni3 14652 neibl 14659 metss 14662 metcnp3 14679 logbgcd1irr 15099 gausslemma2dlem0i 15173 2lgsoddprmlem3 15199 bj-indsuc 15420 bj-nntrans 15443 |
Copyright terms: Public domain | W3C validator |