Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5com | Unicode version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
Ref | Expression |
---|---|
syl5com.1 | |
syl5com.2 |
Ref | Expression |
---|---|
syl5com |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5com.1 | . . 3 | |
2 | 1 | a1d 22 | . 2 |
3 | syl5com.2 | . 2 | |
4 | 2, 3 | sylcom 28 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com12 30 syl5 32 pm2.6dc 848 pm5.11dc 895 ax16i 1835 mor 2045 ceqsalg 2737 cgsexg 2744 cgsex2g 2745 cgsex4g 2746 spc2egv 2799 spc2gv 2800 spc3egv 2801 spc3gv 2802 disjne 3443 uneqdifeqim 3475 eqifdc 3535 triun 4071 sucssel 4379 ordsucg 4455 regexmidlem1 4486 relresfld 5108 relcoi1 5110 fornex 6053 f1dmex 6054 dom2d 6707 findcard 6822 nneo 9246 zeo2 9249 uznfz 9983 difelfzle 10011 ssfzo12 10101 facndiv 10590 fisumcom2 11312 fprodssdc 11464 fprodcom2fi 11500 ndvdssub 11794 bezoutlembi 11860 eucalglt 11905 prmind2 11968 coprm 11989 inopn 12340 basis1 12384 tgss 12402 tgcl 12403 xmeteq0 12698 blssexps 12768 blssex 12769 mopni3 12823 neibl 12830 metss 12833 metcnp3 12850 logbgcd1irr 13223 bj-indsuc 13441 bj-nntrans 13464 |
Copyright terms: Public domain | W3C validator |