| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5com | Unicode version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
| Ref | Expression |
|---|---|
| syl5com.1 |
|
| syl5com.2 |
|
| Ref | Expression |
|---|---|
| syl5com |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5com.1 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | syl5com.2 |
. 2
| |
| 4 | 2, 3 | sylcom 28 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com12 30 syl5 32 pm2.6dc 863 pm5.11dc 910 ax16i 1872 mor 2087 ceqsalg 2791 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 spc2egv 2854 spc2gv 2855 spc3egv 2856 spc3gv 2857 disjne 3505 uneqdifeqim 3537 eqifdc 3597 triun 4145 sucssel 4460 ordsucg 4539 regexmidlem1 4570 relresfld 5200 relcoi1 5202 focdmex 6181 f1dmex 6182 dom2d 6841 findcard 6958 nneo 9446 zeo2 9449 uznfz 10195 difelfzle 10226 ssfzo12 10317 facndiv 10848 fisumcom2 11620 fprodssdc 11772 fprodcom2fi 11808 ndvdssub 12112 bezoutlembi 12197 eucalglt 12250 prmind2 12313 coprm 12337 prmdiveq 12429 mhmlin 13169 issubg2m 13395 nsgbi 13410 issubrng2 13842 issubrg2 13873 lmodlema 13924 rmodislmodlem 13982 rmodislmod 13983 lspsnel6 14040 inopn 14323 basis1 14367 tgss 14383 tgcl 14384 xmeteq0 14679 blssexps 14749 blssex 14750 mopni3 14804 neibl 14811 metss 14814 metcnp3 14831 logbgcd1irr 15287 gausslemma2dlem0i 15382 2lgsoddprmlem3 15436 bj-indsuc 15658 bj-nntrans 15681 |
| Copyright terms: Public domain | W3C validator |