| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5com | Unicode version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
| Ref | Expression |
|---|---|
| syl5com.1 |
|
| syl5com.2 |
|
| Ref | Expression |
|---|---|
| syl5com |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5com.1 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | syl5com.2 |
. 2
| |
| 4 | 2, 3 | sylcom 28 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com12 30 syl5 32 pm2.6dc 867 pm5.11dc 914 ax16i 1904 mor 2120 ceqsalg 2828 cgsexg 2835 cgsex2g 2836 cgsex4g 2837 spc2egv 2893 spc2gv 2894 spc3egv 2895 spc3gv 2896 disjne 3545 uneqdifeqim 3577 eqifdc 3639 triun 4194 sucssel 4514 ordsucg 4593 regexmidlem1 4624 relresfld 5257 relcoi1 5259 focdmex 6258 f1dmex 6259 dom2d 6922 findcard 7046 nneo 9546 zeo2 9549 uznfz 10295 difelfzle 10326 ssfzo12 10425 facndiv 10956 swrdswrd 11232 pfxccatin12lem2 11258 pfxccatin12 11260 pfxccat3 11261 fisumcom2 11944 fprodssdc 12096 fprodcom2fi 12132 ndvdssub 12436 bezoutlembi 12521 eucalglt 12574 prmind2 12637 coprm 12661 prmdiveq 12753 mhmlin 13495 issubg2m 13721 nsgbi 13736 issubrng2 14168 issubrg2 14199 lmodlema 14250 rmodislmodlem 14308 rmodislmod 14309 lspsnel6 14366 inopn 14671 basis1 14715 tgss 14731 tgcl 14732 xmeteq0 15027 blssexps 15097 blssex 15098 mopni3 15152 neibl 15159 metss 15162 metcnp3 15179 logbgcd1irr 15635 gausslemma2dlem0i 15730 2lgsoddprmlem3 15784 bj-indsuc 16249 bj-nntrans 16272 |
| Copyright terms: Public domain | W3C validator |