Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm3.11dc | Unicode version |
Description: Theorem *3.11 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.1 749, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 22-Apr-2018.) |
Ref | Expression |
---|---|
pm3.11dc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anordc 951 | . . . 4 DECID DECID | |
2 | 1 | imp 123 | . . 3 DECID DECID |
3 | 2 | biimprd 157 | . 2 DECID DECID |
4 | 3 | ex 114 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 |
This theorem is referenced by: pm3.12dc 953 pm3.13dc 954 |
Copyright terms: Public domain | W3C validator |