Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm3.12dc | Unicode version |
Description: Theorem *3.12 of [WhiteheadRussell] p. 111, but for decidable propositions. (Contributed by Jim Kingdon, 22-Apr-2018.) |
Ref | Expression |
---|---|
pm3.12dc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.11dc 947 | . . . 4 DECID DECID | |
2 | 1 | imp 123 | . . 3 DECID DECID |
3 | dcn 832 | . . . . . 6 DECID DECID | |
4 | dcn 832 | . . . . . 6 DECID DECID | |
5 | dcor 925 | . . . . . 6 DECID DECID DECID | |
6 | 3, 4, 5 | syl2im 38 | . . . . 5 DECID DECID DECID |
7 | dfordc 882 | . . . . 5 DECID | |
8 | 6, 7 | syl6 33 | . . . 4 DECID DECID |
9 | 8 | imp 123 | . . 3 DECID DECID |
10 | 2, 9 | mpbird 166 | . 2 DECID DECID |
11 | 10 | ex 114 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |