| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm3.11dc | GIF version | ||
| Description: Theorem *3.11 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.1 755, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 22-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| pm3.11dc | ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anordc 958 | . . . 4 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) | |
| 2 | 1 | imp 124 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))) | 
| 3 | 2 | biimprd 158 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓))) | 
| 4 | 3 | ex 115 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 | 
| This theorem is referenced by: pm3.12dc 960 pm3.13dc 961 | 
| Copyright terms: Public domain | W3C validator |