Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm3.11dc | GIF version |
Description: Theorem *3.11 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.1 744, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 22-Apr-2018.) |
Ref | Expression |
---|---|
pm3.11dc | ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anordc 941 | . . . 4 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) | |
2 | 1 | imp 123 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))) |
3 | 2 | biimprd 157 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓))) |
4 | 3 | ex 114 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 |
This theorem is referenced by: pm3.12dc 943 pm3.13dc 944 |
Copyright terms: Public domain | W3C validator |