ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anordc Unicode version

Theorem anordc 946
Description: Conjunction in terms of disjunction (DeMorgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120, but where the propositions are decidable. The forward direction, pm3.1 744, holds for all propositions, but the equivalence only holds given decidability. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
anordc  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  /\  ps )  <->  -.  ( -.  ph  \/  -.  ps )
) ) )

Proof of Theorem anordc
StepHypRef Expression
1 dcan2 924 . 2  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  /\  ps )
) )
2 ianordc 889 . . . . 5  |-  (DECID  ph  ->  ( -.  ( ph  /\  ps )  <->  ( -.  ph  \/  -.  ps ) ) )
32bicomd 140 . . . 4  |-  (DECID  ph  ->  ( ( -.  ph  \/  -.  ps )  <->  -.  ( ph  /\  ps ) ) )
43a1d 22 . . 3  |-  (DECID  ph  ->  (DECID  (
ph  /\  ps )  ->  ( ( -.  ph  \/  -.  ps )  <->  -.  ( ph  /\  ps ) ) ) )
54con2biddc 870 . 2  |-  (DECID  ph  ->  (DECID  (
ph  /\  ps )  ->  ( ( ph  /\  ps )  <->  -.  ( -.  ph  \/  -.  ps )
) ) )
61, 5syld 45 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  /\  ps )  <->  -.  ( -.  ph  \/  -.  ps )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by:  pm3.11dc  947  dn1dc  950
  Copyright terms: Public domain W3C validator