Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimprd | Unicode version |
Description: Deduce a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimprd.1 |
Ref | Expression |
---|---|
biimprd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | biimprd.1 | . 2 | |
3 | 1, 2 | syl5ibr 155 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl6bir 163 mpbird 166 sylibrd 168 sylbird 169 imbi1d 230 biimpar 295 mtbid 667 mtbii 669 orbi2d 785 pm4.55dc 933 pm3.11dc 952 prlem1 968 nfimd 1578 dral1 1723 cbvalv1 1744 cbvalh 1746 ax16i 1851 speiv 1855 a16g 1857 cbvalvw 1912 cbvexvw 1913 cleqh 2270 pm13.18 2421 rspcimdv 2835 rspcimedv 2836 rspcedv 2838 moi2 2911 moi 2913 eqrd 3165 abnexg 4431 ralxfrd 4447 ralxfr2d 4449 rexxfr2d 4450 elres 4927 2elresin 5309 f1ocnv 5455 tz6.12c 5526 fvun1 5562 dffo4 5644 isores3 5794 tposfo2 6246 issmo2 6268 iordsmo 6276 smoel2 6282 fiintim 6906 ismkvnex 7131 prarloclemarch 7380 genprndl 7483 genprndu 7484 ltpopr 7557 ltsopr 7558 recexprlem1ssl 7595 recexprlem1ssu 7596 aptiprlemu 7602 lttrsr 7724 nnmulcl 8899 nnnegz 9215 eluzdc 9569 negm 9574 iccid 9882 icoshft 9947 fzen 9999 elfz2nn0 10068 elfzom1p1elfzo 10170 flqeqceilz 10274 zmodidfzoimp 10310 caucvgre 10945 qdenre 11166 dvdsval2 11752 negdvdsb 11769 muldvds2 11779 dvdsabseq 11807 bezoutlemaz 11958 bezoutlembz 11959 rplpwr 11982 alginv 12001 algfx 12006 coprmgcdb 12042 divgcdcoprm0 12055 prmgt1 12086 oddprmgt2 12088 rpexp1i 12108 2sqpwodd 12130 qnumdencl 12141 phiprmpw 12176 prmdiveq 12190 prm23lt5 12217 pcmpt 12295 infpnlem1 12311 oddennn 12347 nninfdclemf1 12407 cnpnei 13013 bl2in 13197 addcncntoplem 13345 rescncf 13362 limcresi 13429 cnplimcim 13430 efltlemlt 13489 ioocosf1o 13569 uzdcinzz 13833 bj-charfunbi 13846 bj-omssind 13970 bj-bdfindes 13984 bj-nntrans 13986 bj-nnelirr 13988 bj-omtrans 13991 setindis 14002 bdsetindis 14004 bj-inf2vnlem3 14007 bj-inf2vnlem4 14008 bj-findis 14014 bj-findes 14016 |
Copyright terms: Public domain | W3C validator |