Proof of Theorem pm3.12dc
Step | Hyp | Ref
| Expression |
1 | | pm3.11dc 947 |
. . . 4
⊢
(DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)))) |
2 | 1 | imp 123 |
. . 3
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓))) |
3 | | dcn 832 |
. . . . . 6
⊢
(DECID 𝜑 → DECID ¬ 𝜑) |
4 | | dcn 832 |
. . . . . 6
⊢
(DECID 𝜓 → DECID ¬ 𝜓) |
5 | | dcor 925 |
. . . . . 6
⊢
(DECID ¬ 𝜑 → (DECID ¬ 𝜓 → DECID
(¬ 𝜑 ∨ ¬ 𝜓))) |
6 | 3, 4, 5 | syl2im 38 |
. . . . 5
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(¬ 𝜑 ∨ ¬ 𝜓))) |
7 | | dfordc 882 |
. . . . 5
⊢
(DECID (¬ 𝜑 ∨ ¬ 𝜓) → (((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓)) ↔ (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)))) |
8 | 6, 7 | syl6 33 |
. . . 4
⊢
(DECID 𝜑 → (DECID 𝜓 → (((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓)) ↔ (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓))))) |
9 | 8 | imp 123 |
. . 3
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓)) ↔ (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)))) |
10 | 2, 9 | mpbird 166 |
. 2
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓))) |
11 | 10 | ex 114 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓)))) |