ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfordc Unicode version

Theorem dfordc 892
Description: Definition of disjunction in terms of negation and implication for a decidable proposition. Based on definition of [Margaris] p. 49. One direction, pm2.53 722, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 26-Mar-2018.)
Assertion
Ref Expression
dfordc  |-  (DECID  ph  ->  ( ( ph  \/  ps ) 
<->  ( -.  ph  ->  ps ) ) )

Proof of Theorem dfordc
StepHypRef Expression
1 pm2.53 722 . 2  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
2 pm2.54dc 891 . 2  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( ph  \/  ps ) ) )
31, 2impbid2 143 1  |-  (DECID  ph  ->  ( ( ph  \/  ps ) 
<->  ( -.  ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by:  imordc  897  pm4.64dc  900  pm5.17dc  904  pm5.6dc  926  pm3.12dc  958  pm5.15dc  1389  19.32dc  1679  r19.30dc  2624  r19.32vdc  2626  prime  9354  isprm4  12121  prm2orodd  12128  euclemma  12148  phiprmpw  12224
  Copyright terms: Public domain W3C validator