ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfordc Unicode version

Theorem dfordc 887
Description: Definition of disjunction in terms of negation and implication for a decidable proposition. Based on definition of [Margaris] p. 49. One direction, pm2.53 717, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 26-Mar-2018.)
Assertion
Ref Expression
dfordc  |-  (DECID  ph  ->  ( ( ph  \/  ps ) 
<->  ( -.  ph  ->  ps ) ) )

Proof of Theorem dfordc
StepHypRef Expression
1 pm2.53 717 . 2  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
2 pm2.54dc 886 . 2  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( ph  \/  ps ) ) )
31, 2impbid2 142 1  |-  (DECID  ph  ->  ( ( ph  \/  ps ) 
<->  ( -.  ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 703  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830
This theorem is referenced by:  imordc  892  pm4.64dc  895  pm5.17dc  899  pm5.6dc  921  pm3.12dc  953  pm5.15dc  1384  19.32dc  1672  r19.30dc  2617  r19.32vdc  2619  prime  9311  isprm4  12073  prm2orodd  12080  euclemma  12100  phiprmpw  12176
  Copyright terms: Public domain W3C validator