ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcor Unicode version

Theorem dcor 938
Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
dcor  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  \/  ps )
) )

Proof of Theorem dcor
StepHypRef Expression
1 df-dc 837 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 orc 714 . . . . . 6  |-  ( ph  ->  ( ph  \/  ps ) )
32orcd 735 . . . . 5  |-  ( ph  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
4 df-dc 837 . . . . 5  |-  (DECID  ( ph  \/  ps )  <->  ( ( ph  \/  ps )  \/ 
-.  ( ph  \/  ps ) ) )
53, 4sylibr 134 . . . 4  |-  ( ph  -> DECID  (
ph  \/  ps )
)
65a1d 22 . . 3  |-  ( ph  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
7 df-dc 837 . . . . 5  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
8 olc 713 . . . . . . . . 9  |-  ( ps 
->  ( ph  \/  ps ) )
98adantl 277 . . . . . . . 8  |-  ( ( -.  ph  /\  ps )  ->  ( ph  \/  ps ) )
109orcd 735 . . . . . . 7  |-  ( ( -.  ph  /\  ps )  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
1110, 4sylibr 134 . . . . . 6  |-  ( ( -.  ph  /\  ps )  -> DECID  (
ph  \/  ps )
)
12 ioran 754 . . . . . . . . 9  |-  ( -.  ( ph  \/  ps ) 
<->  ( -.  ph  /\  -.  ps ) )
1312biimpri 133 . . . . . . . 8  |-  ( ( -.  ph  /\  -.  ps )  ->  -.  ( ph  \/  ps ) )
1413olcd 736 . . . . . . 7  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
1514, 4sylibr 134 . . . . . 6  |-  ( ( -.  ph  /\  -.  ps )  -> DECID 
( ph  \/  ps ) )
1611, 15jaodan 799 . . . . 5  |-  ( ( -.  ph  /\  ( ps  \/  -.  ps )
)  -> DECID  ( ph  \/  ps ) )
177, 16sylan2b 287 . . . 4  |-  ( ( -.  ph  /\ DECID  ps )  -> DECID  ( ph  \/  ps ) )
1817ex 115 . . 3  |-  ( -. 
ph  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
196, 18jaoi 718 . 2  |-  ( (
ph  \/  -.  ph )  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
201, 19sylbi 121 1  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  \/  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837
This theorem is referenced by:  pm4.55dc  941  orandc  942  pm3.12dc  961  pm3.13dc  962  dn1dc  963  eueq3dc  2951  distrlem4prl  7717  distrlem4pru  7718  exfzdc  10391  lcmmndc  12459  isprm3  12515  perfectlem2  15547  lgsval  15556  lgsfvalg  15557  lgsfcl2  15558  lgsval2lem  15562  lgsdir2  15585  lgsne0  15590  lgsdirnn0  15599  lgsdinn0  15600  2lgs  15656  2lgsoddprm  15665  cndcap  16139
  Copyright terms: Public domain W3C validator