Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcor | Unicode version |
Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.) |
Ref | Expression |
---|---|
dcor | DECID DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 821 | . 2 DECID | |
2 | orc 702 | . . . . . 6 | |
3 | 2 | orcd 723 | . . . . 5 |
4 | df-dc 821 | . . . . 5 DECID | |
5 | 3, 4 | sylibr 133 | . . . 4 DECID |
6 | 5 | a1d 22 | . . 3 DECID DECID |
7 | df-dc 821 | . . . . 5 DECID | |
8 | olc 701 | . . . . . . . . 9 | |
9 | 8 | adantl 275 | . . . . . . . 8 |
10 | 9 | orcd 723 | . . . . . . 7 |
11 | 10, 4 | sylibr 133 | . . . . . 6 DECID |
12 | ioran 742 | . . . . . . . . 9 | |
13 | 12 | biimpri 132 | . . . . . . . 8 |
14 | 13 | olcd 724 | . . . . . . 7 |
15 | 14, 4 | sylibr 133 | . . . . . 6 DECID |
16 | 11, 15 | jaodan 787 | . . . . 5 DECID |
17 | 7, 16 | sylan2b 285 | . . . 4 DECID DECID |
18 | 17 | ex 114 | . . 3 DECID DECID |
19 | 6, 18 | jaoi 706 | . 2 DECID DECID |
20 | 1, 19 | sylbi 120 | 1 DECID DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 821 |
This theorem is referenced by: pm4.55dc 923 orandc 924 pm3.12dc 943 pm3.13dc 944 dn1dc 945 eueq3dc 2886 distrlem4prl 7487 distrlem4pru 7488 exfzdc 10121 lcmmndc 11919 isprm3 11975 |
Copyright terms: Public domain | W3C validator |