ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcor Unicode version

Theorem dcor 941
Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
dcor  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  \/  ps )
) )

Proof of Theorem dcor
StepHypRef Expression
1 df-dc 840 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 orc 717 . . . . . 6  |-  ( ph  ->  ( ph  \/  ps ) )
32orcd 738 . . . . 5  |-  ( ph  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
4 df-dc 840 . . . . 5  |-  (DECID  ( ph  \/  ps )  <->  ( ( ph  \/  ps )  \/ 
-.  ( ph  \/  ps ) ) )
53, 4sylibr 134 . . . 4  |-  ( ph  -> DECID  (
ph  \/  ps )
)
65a1d 22 . . 3  |-  ( ph  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
7 df-dc 840 . . . . 5  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
8 olc 716 . . . . . . . . 9  |-  ( ps 
->  ( ph  \/  ps ) )
98adantl 277 . . . . . . . 8  |-  ( ( -.  ph  /\  ps )  ->  ( ph  \/  ps ) )
109orcd 738 . . . . . . 7  |-  ( ( -.  ph  /\  ps )  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
1110, 4sylibr 134 . . . . . 6  |-  ( ( -.  ph  /\  ps )  -> DECID  (
ph  \/  ps )
)
12 ioran 757 . . . . . . . . 9  |-  ( -.  ( ph  \/  ps ) 
<->  ( -.  ph  /\  -.  ps ) )
1312biimpri 133 . . . . . . . 8  |-  ( ( -.  ph  /\  -.  ps )  ->  -.  ( ph  \/  ps ) )
1413olcd 739 . . . . . . 7  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
1514, 4sylibr 134 . . . . . 6  |-  ( ( -.  ph  /\  -.  ps )  -> DECID 
( ph  \/  ps ) )
1611, 15jaodan 802 . . . . 5  |-  ( ( -.  ph  /\  ( ps  \/  -.  ps )
)  -> DECID  ( ph  \/  ps ) )
177, 16sylan2b 287 . . . 4  |-  ( ( -.  ph  /\ DECID  ps )  -> DECID  ( ph  \/  ps ) )
1817ex 115 . . 3  |-  ( -. 
ph  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
196, 18jaoi 721 . 2  |-  ( (
ph  \/  -.  ph )  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
201, 19sylbi 121 1  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  \/  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  pm4.55dc  944  orandc  945  pm3.12dc  964  pm3.13dc  965  dn1dc  966  eueq3dc  2977  distrlem4prl  7767  distrlem4pru  7768  exfzdc  10441  lcmmndc  12579  isprm3  12635  perfectlem2  15668  lgsval  15677  lgsfvalg  15678  lgsfcl2  15679  lgsval2lem  15683  lgsdir2  15706  lgsne0  15711  lgsdirnn0  15720  lgsdinn0  15721  2lgs  15777  2lgsoddprm  15786  cndcap  16386
  Copyright terms: Public domain W3C validator