ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcor Unicode version

Theorem dcor 935
Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
dcor  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  \/  ps )
) )

Proof of Theorem dcor
StepHypRef Expression
1 df-dc 835 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 orc 712 . . . . . 6  |-  ( ph  ->  ( ph  \/  ps ) )
32orcd 733 . . . . 5  |-  ( ph  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
4 df-dc 835 . . . . 5  |-  (DECID  ( ph  \/  ps )  <->  ( ( ph  \/  ps )  \/ 
-.  ( ph  \/  ps ) ) )
53, 4sylibr 134 . . . 4  |-  ( ph  -> DECID  (
ph  \/  ps )
)
65a1d 22 . . 3  |-  ( ph  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
7 df-dc 835 . . . . 5  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
8 olc 711 . . . . . . . . 9  |-  ( ps 
->  ( ph  \/  ps ) )
98adantl 277 . . . . . . . 8  |-  ( ( -.  ph  /\  ps )  ->  ( ph  \/  ps ) )
109orcd 733 . . . . . . 7  |-  ( ( -.  ph  /\  ps )  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
1110, 4sylibr 134 . . . . . 6  |-  ( ( -.  ph  /\  ps )  -> DECID  (
ph  \/  ps )
)
12 ioran 752 . . . . . . . . 9  |-  ( -.  ( ph  \/  ps ) 
<->  ( -.  ph  /\  -.  ps ) )
1312biimpri 133 . . . . . . . 8  |-  ( ( -.  ph  /\  -.  ps )  ->  -.  ( ph  \/  ps ) )
1413olcd 734 . . . . . . 7  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
1514, 4sylibr 134 . . . . . 6  |-  ( ( -.  ph  /\  -.  ps )  -> DECID 
( ph  \/  ps ) )
1611, 15jaodan 797 . . . . 5  |-  ( ( -.  ph  /\  ( ps  \/  -.  ps )
)  -> DECID  ( ph  \/  ps ) )
177, 16sylan2b 287 . . . 4  |-  ( ( -.  ph  /\ DECID  ps )  -> DECID  ( ph  \/  ps ) )
1817ex 115 . . 3  |-  ( -. 
ph  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
196, 18jaoi 716 . 2  |-  ( (
ph  \/  -.  ph )  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
201, 19sylbi 121 1  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  \/  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by:  pm4.55dc  938  orandc  939  pm3.12dc  958  pm3.13dc  959  dn1dc  960  eueq3dc  2913  distrlem4prl  7586  distrlem4pru  7587  exfzdc  10243  lcmmndc  12065  isprm3  12121  lgsval  14566  lgsfvalg  14567  lgsfcl2  14568  lgsval2lem  14572  lgsdir2  14595  lgsne0  14600  lgsdirnn0  14609  lgsdinn0  14610  cndcap  14969
  Copyright terms: Public domain W3C validator