ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcor Unicode version

Theorem dcor 937
Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
dcor  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  \/  ps )
) )

Proof of Theorem dcor
StepHypRef Expression
1 df-dc 836 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 orc 713 . . . . . 6  |-  ( ph  ->  ( ph  \/  ps ) )
32orcd 734 . . . . 5  |-  ( ph  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
4 df-dc 836 . . . . 5  |-  (DECID  ( ph  \/  ps )  <->  ( ( ph  \/  ps )  \/ 
-.  ( ph  \/  ps ) ) )
53, 4sylibr 134 . . . 4  |-  ( ph  -> DECID  (
ph  \/  ps )
)
65a1d 22 . . 3  |-  ( ph  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
7 df-dc 836 . . . . 5  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
8 olc 712 . . . . . . . . 9  |-  ( ps 
->  ( ph  \/  ps ) )
98adantl 277 . . . . . . . 8  |-  ( ( -.  ph  /\  ps )  ->  ( ph  \/  ps ) )
109orcd 734 . . . . . . 7  |-  ( ( -.  ph  /\  ps )  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
1110, 4sylibr 134 . . . . . 6  |-  ( ( -.  ph  /\  ps )  -> DECID  (
ph  \/  ps )
)
12 ioran 753 . . . . . . . . 9  |-  ( -.  ( ph  \/  ps ) 
<->  ( -.  ph  /\  -.  ps ) )
1312biimpri 133 . . . . . . . 8  |-  ( ( -.  ph  /\  -.  ps )  ->  -.  ( ph  \/  ps ) )
1413olcd 735 . . . . . . 7  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ( ph  \/  ps )  \/  -.  ( ph  \/  ps )
) )
1514, 4sylibr 134 . . . . . 6  |-  ( ( -.  ph  /\  -.  ps )  -> DECID 
( ph  \/  ps ) )
1611, 15jaodan 798 . . . . 5  |-  ( ( -.  ph  /\  ( ps  \/  -.  ps )
)  -> DECID  ( ph  \/  ps ) )
177, 16sylan2b 287 . . . 4  |-  ( ( -.  ph  /\ DECID  ps )  -> DECID  ( ph  \/  ps ) )
1817ex 115 . . 3  |-  ( -. 
ph  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
196, 18jaoi 717 . 2  |-  ( (
ph  \/  -.  ph )  ->  (DECID  ps  -> DECID  ( ph  \/  ps ) ) )
201, 19sylbi 121 1  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  \/  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  pm4.55dc  940  orandc  941  pm3.12dc  960  pm3.13dc  961  dn1dc  962  eueq3dc  2934  distrlem4prl  7644  distrlem4pru  7645  exfzdc  10307  lcmmndc  12200  isprm3  12256  lgsval  15120  lgsfvalg  15121  lgsfcl2  15122  lgsval2lem  15126  lgsdir2  15149  lgsne0  15154  lgsdirnn0  15163  lgsdinn0  15164  cndcap  15549
  Copyright terms: Public domain W3C validator