ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.44 Unicode version

Theorem pm4.44 769
Description: Theorem *4.44 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.44  |-  ( ph  <->  (
ph  \/  ( ph  /\ 
ps ) ) )

Proof of Theorem pm4.44
StepHypRef Expression
1 orc 702 . 2  |-  ( ph  ->  ( ph  \/  ( ph  /\  ps ) ) )
2 id 19 . . 3  |-  ( ph  ->  ph )
3 simpl 108 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
42, 3jaoi 706 . 2  |-  ( (
ph  \/  ( ph  /\ 
ps ) )  ->  ph )
51, 4impbii 125 1  |-  ( ph  <->  (
ph  \/  ( ph  /\ 
ps ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator