ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.53 Unicode version

Theorem pm2.53 722
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. This holds intuitionistically, although its converse does not (see pm2.54dc 891). (Contributed by NM, 3-Jan-2005.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
pm2.53  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.53
StepHypRef Expression
1 pm2.24 621 . 2  |-  ( ph  ->  ( -.  ph  ->  ps ) )
2 ax-1 6 . 2  |-  ( ps 
->  ( -.  ph  ->  ps ) )
31, 2jaoi 716 1  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ori  723  ord  724  orel1  725  pm2.63  800  notnotrdc  843  dfordc  892  pm5.6r  927  xorbin  1384  19.33b2  1627  r19.30dc  2622  onsucelsucexmid  4523  oprabidlem  5896  omnimkv  7144  xnn0nnn0pnf  9223  absle  11064
  Copyright terms: Public domain W3C validator