ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.53 Unicode version

Theorem pm2.53 724
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. This holds intuitionistically, although its converse does not (see pm2.54dc 893). (Contributed by NM, 3-Jan-2005.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
pm2.53  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.53
StepHypRef Expression
1 pm2.24 622 . 2  |-  ( ph  ->  ( -.  ph  ->  ps ) )
2 ax-1 6 . 2  |-  ( ps 
->  ( -.  ph  ->  ps ) )
31, 2jaoi 718 1  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ori  725  ord  726  orel1  727  pm2.63  802  notnotrdc  845  dfordc  894  pm5.6r  929  xorbin  1404  19.33b2  1653  r19.30dc  2655  onsucelsucexmid  4596  oprabidlem  5998  omnimkv  7284  xnn0nnn0pnf  9406  absle  11515
  Copyright terms: Public domain W3C validator