ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ianordc Unicode version

Theorem ianordc 835
Description: Negated conjunction in terms of disjunction (DeMorgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120, but where one proposition is decidable. The reverse direction, pm3.14 703, holds for all propositions, but the equivalence only holds where one proposition is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
ianordc  |-  (DECID  ph  ->  ( -.  ( ph  /\  ps )  <->  ( -.  ph  \/  -.  ps ) ) )

Proof of Theorem ianordc
StepHypRef Expression
1 imnan 657 . 2  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
2 pm4.62dc 834 . 2  |-  (DECID  ph  ->  ( ( ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) ) )
31, 2syl5bbr 192 1  |-  (DECID  ph  ->  ( -.  ( ph  /\  ps )  <->  ( -.  ph  \/  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662  DECID wdc 778
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663
This theorem depends on definitions:  df-bi 115  df-dc 779
This theorem is referenced by:  anordc  900  19.33bdc  1564  nn0n0n1ge2b  8759  gcdsupex  10824  gcdsupcl  10825  dfgcd2  10878
  Copyright terms: Public domain W3C validator