ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ianordc Unicode version

Theorem ianordc 900
Description: Negated conjunction in terms of disjunction (DeMorgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120, but where one proposition is decidable. The reverse direction, pm3.14 754, holds for all propositions, but the equivalence only holds where one proposition is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
ianordc  |-  (DECID  ph  ->  ( -.  ( ph  /\  ps )  <->  ( -.  ph  \/  -.  ps ) ) )

Proof of Theorem ianordc
StepHypRef Expression
1 imnan 691 . 2  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
2 pm4.62dc 899 . 2  |-  (DECID  ph  ->  ( ( ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) ) )
31, 2bitr3id 194 1  |-  (DECID  ph  ->  ( -.  ( ph  /\  ps )  <->  ( -.  ph  \/  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  anordc  958  19.33bdc  1641  nn0n0n1ge2b  9396  nelfzo  10218  gcdsupex  12094  gcdsupcl  12095  dfgcd2  12151
  Copyright terms: Public domain W3C validator