ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.63dc Unicode version

Theorem pm5.63dc 936
Description: Theorem *5.63 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
Assertion
Ref Expression
pm5.63dc  |-  (DECID  ph  ->  ( ( ph  \/  ps ) 
<->  ( ph  \/  ( -.  ph  /\  ps )
) ) )

Proof of Theorem pm5.63dc
StepHypRef Expression
1 df-dc 825 . . 3  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 ordi 806 . . . 4  |-  ( (
ph  \/  ( -.  ph 
/\  ps ) )  <->  ( ( ph  \/  -.  ph )  /\  ( ph  \/  ps ) ) )
32simplbi2 383 . . 3  |-  ( (
ph  \/  -.  ph )  ->  ( ( ph  \/  ps )  ->  ( ph  \/  ( -.  ph  /\  ps ) ) ) )
41, 3sylbi 120 . 2  |-  (DECID  ph  ->  ( ( ph  \/  ps )  ->  ( ph  \/  ( -.  ph  /\  ps ) ) ) )
52simprbi 273 . 2  |-  ( (
ph  \/  ( -.  ph 
/\  ps ) )  -> 
( ph  \/  ps ) )
64, 5impbid1 141 1  |-  (DECID  ph  ->  ( ( ph  \/  ps ) 
<->  ( ph  \/  ( -.  ph  /\  ps )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator