![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bianfi | Unicode version |
Description: A wff conjoined with falsehood is false. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) |
Ref | Expression |
---|---|
bianfi.1 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
bianfi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianfi.1 |
. 2
![]() ![]() ![]() | |
2 | 1 | intnan 879 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 1, 2 | 2false 655 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: in0 3336 opthprc 4518 |
Copyright terms: Public domain | W3C validator |