![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bianfi | Unicode version |
Description: A wff conjoined with falsehood is false. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) |
Ref | Expression |
---|---|
bianfi.1 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
bianfi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianfi.1 |
. 2
![]() ![]() ![]() | |
2 | 1 | intnan 929 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 1, 2 | 2false 701 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: in0 3459 opthprc 4679 |
Copyright terms: Public domain | W3C validator |