ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 Unicode version

Theorem simplbi2 385
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1  |-  ( ph  <->  ( ps  /\  ch )
)
Assertion
Ref Expression
simplbi2  |-  ( ps 
->  ( ch  ->  ph )
)

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3  |-  ( ph  <->  ( ps  /\  ch )
)
21biimpri 133 . 2  |-  ( ( ps  /\  ch )  ->  ph )
32ex 115 1  |-  ( ps 
->  ( ch  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.62dc  948  pm5.63dc  949  simplbi2com  1465  reuss2  3461  elni2  7462  elpq  9805  elfz0ubfz0  10282  elfzmlbp  10289  fzo1fzo0n0  10344  elfzo0z  10345  fzofzim  10349  elfzodifsumelfzo  10367  swrdswrd  11196  swrdccatin1  11216  p1modz1  12220  dfgcd2  12450  algcvga  12488  pcprendvds  12728
  Copyright terms: Public domain W3C validator