ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 Unicode version

Theorem simplbi2 385
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1  |-  ( ph  <->  ( ps  /\  ch )
)
Assertion
Ref Expression
simplbi2  |-  ( ps 
->  ( ch  ->  ph )
)

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3  |-  ( ph  <->  ( ps  /\  ch )
)
21biimpri 133 . 2  |-  ( ( ps  /\  ch )  ->  ph )
32ex 115 1  |-  ( ps 
->  ( ch  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.62dc  945  pm5.63dc  946  simplbi2com  1444  reuss2  3415  elni2  7312  elpq  9646  elfz0ubfz0  10122  elfzmlbp  10129  fzo1fzo0n0  10180  elfzo0z  10181  fzofzim  10185  elfzodifsumelfzo  10198  p1modz1  11796  dfgcd2  12009  algcvga  12045  pcprendvds  12284
  Copyright terms: Public domain W3C validator