ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 Unicode version

Theorem simplbi2 385
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1  |-  ( ph  <->  ( ps  /\  ch )
)
Assertion
Ref Expression
simplbi2  |-  ( ps 
->  ( ch  ->  ph )
)

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3  |-  ( ph  <->  ( ps  /\  ch )
)
21biimpri 133 . 2  |-  ( ( ps  /\  ch )  ->  ph )
32ex 115 1  |-  ( ps 
->  ( ch  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.62dc  951  pm5.63dc  952  simplbi2com  1487  reuss2  3484  elni2  7497  elpq  9840  elfz0ubfz0  10317  elfzmlbp  10324  fzo1fzo0n0  10379  elfzo0z  10380  fzofzim  10384  elfzodifsumelfzo  10402  swrdswrd  11232  swrdccatin1  11252  p1modz1  12300  dfgcd2  12530  algcvga  12568  pcprendvds  12808  usgruspgrben  15978
  Copyright terms: Public domain W3C validator