ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.6dc Unicode version

Theorem pm5.6dc 916
Description: Conjunction in antecedent versus disjunction in consequent, for a decidable proposition. Theorem *5.6 of [WhiteheadRussell] p. 125, with decidability condition added. The reverse implication holds for all propositions (see pm5.6r 917). (Contributed by Jim Kingdon, 2-Apr-2018.)
Assertion
Ref Expression
pm5.6dc  |-  (DECID  ps  ->  ( ( ( ph  /\  -.  ps )  ->  ch ) 
<->  ( ph  ->  ( ps  \/  ch ) ) ) )

Proof of Theorem pm5.6dc
StepHypRef Expression
1 impexp 261 . 2  |-  ( ( ( ph  /\  -.  ps )  ->  ch )  <->  (
ph  ->  ( -.  ps  ->  ch ) ) )
2 dfordc 882 . . 3  |-  (DECID  ps  ->  ( ( ps  \/  ch ) 
<->  ( -.  ps  ->  ch ) ) )
32imbi2d 229 . 2  |-  (DECID  ps  ->  ( ( ph  ->  ( ps  \/  ch ) )  <-> 
( ph  ->  ( -. 
ps  ->  ch ) ) ) )
41, 3bitr4id 198 1  |-  (DECID  ps  ->  ( ( ( ph  /\  -.  ps )  ->  ch ) 
<->  ( ph  ->  ( ps  \/  ch ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator