ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.6dc GIF version

Theorem pm5.6dc 926
Description: Conjunction in antecedent versus disjunction in consequent, for a decidable proposition. Theorem *5.6 of [WhiteheadRussell] p. 125, with decidability condition added. The reverse implication holds for all propositions (see pm5.6r 927). (Contributed by Jim Kingdon, 2-Apr-2018.)
Assertion
Ref Expression
pm5.6dc (DECID 𝜓 → (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))))

Proof of Theorem pm5.6dc
StepHypRef Expression
1 impexp 263 . 2 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (¬ 𝜓𝜒)))
2 dfordc 892 . . 3 (DECID 𝜓 → ((𝜓𝜒) ↔ (¬ 𝜓𝜒)))
32imbi2d 230 . 2 (DECID 𝜓 → ((𝜑 → (𝜓𝜒)) ↔ (𝜑 → (¬ 𝜓𝜒))))
41, 3bitr4id 199 1 (DECID 𝜓 → (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator