| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impexp | Unicode version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 261 |
. 2
| |
| 2 | pm3.31 262 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 694 pm4.14dc 892 pm5.6dc 928 2sb6 2012 2sb6rf 2018 2exsb 2037 mor 2096 eu2 2098 moanim 2128 r2alf 2523 r3al 2550 r19.23t 2613 ceqsralt 2799 rspc2gv 2889 ralrab 2934 ralrab2 2938 euind 2960 reu2 2961 reu3 2963 rmo4 2966 rmo3f 2970 reuind 2978 rmo2ilem 3088 rmo3 3090 ralss 3259 rabss 3270 raldifb 3313 unissb 3880 elintrab 3897 ssintrab 3908 dftr5 4145 repizf2lem 4205 reusv3 4507 tfi 4630 raliunxp 4819 fununi 5342 dff13 5837 dfsmo2 6373 tfr1onlemaccex 6434 tfrcllemaccex 6447 qliftfun 6704 nnnninfeq2 7231 prime 9472 raluz 9699 raluz2 9700 ralrp 9797 facwordi 10885 modfsummod 11769 nnwosdc 12360 isprm2 12439 isprm4 12441 metcnp 14984 limcdifap 15134 bdcriota 15819 nnnninfex 15959 |
| Copyright terms: Public domain | W3C validator |