![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impexp | Unicode version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 261 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm3.31 262 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 693 pm4.14dc 891 pm5.6dc 927 2sb6 2000 2sb6rf 2006 2exsb 2025 mor 2084 eu2 2086 moanim 2116 r2alf 2511 r3al 2538 r19.23t 2601 ceqsralt 2787 rspc2gv 2876 ralrab 2921 ralrab2 2925 euind 2947 reu2 2948 reu3 2950 rmo4 2953 rmo3f 2957 reuind 2965 rmo2ilem 3075 rmo3 3077 ralss 3245 rabss 3256 raldifb 3299 unissb 3865 elintrab 3882 ssintrab 3893 dftr5 4130 repizf2lem 4190 reusv3 4491 tfi 4614 raliunxp 4803 fununi 5322 dff13 5811 dfsmo2 6340 tfr1onlemaccex 6401 tfrcllemaccex 6414 qliftfun 6671 nnnninfeq2 7188 prime 9416 raluz 9643 raluz2 9644 ralrp 9741 facwordi 10811 modfsummod 11601 nnwosdc 12176 isprm2 12255 isprm4 12257 metcnp 14680 limcdifap 14816 bdcriota 15375 |
Copyright terms: Public domain | W3C validator |