| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impexp | Unicode version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 261 |
. 2
| |
| 2 | pm3.31 262 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 694 pm4.14dc 892 pm5.6dc 928 2sb6 2013 2sb6rf 2019 2exsb 2038 mor 2098 eu2 2100 moanim 2130 r2alf 2525 r3al 2552 r19.23t 2615 ceqsralt 2804 rspc2gv 2896 ralrab 2941 ralrab2 2945 euind 2967 reu2 2968 reu3 2970 rmo4 2973 rmo3f 2977 reuind 2985 rmo2ilem 3096 rmo3 3098 ralss 3267 rabss 3278 raldifb 3321 unissb 3894 elintrab 3911 ssintrab 3922 dftr5 4161 repizf2lem 4221 reusv3 4525 tfi 4648 raliunxp 4837 fununi 5361 dff13 5860 dfsmo2 6396 tfr1onlemaccex 6457 tfrcllemaccex 6470 qliftfun 6727 nnnninfeq2 7257 prime 9507 raluz 9734 raluz2 9735 ralrp 9832 facwordi 10922 modfsummod 11884 nnwosdc 12475 isprm2 12554 isprm4 12556 metcnp 15099 limcdifap 15249 bdcriota 16018 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |