![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impexp | Unicode version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 258 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm3.31 259 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 125 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imp4a 342 exp4a 359 imdistan 434 pm5.3 460 pm4.87 525 nan 662 pm4.14dc 826 pm5.6dc 874 2sb6 1909 2sb6rf 1915 2exsb 1934 mor 1991 eu2 1993 moanim 2023 r2alf 2396 r3al 2421 r19.23t 2480 ceqsralt 2647 rspc2gv 2734 ralrab 2777 ralrab2 2781 euind 2803 reu2 2804 reu3 2806 rmo4 2809 rmo3f 2813 reuind 2821 rmo2ilem 2929 rmo3 2931 ralss 3088 rabss 3099 raldifb 3141 unissb 3689 elintrab 3706 ssintrab 3717 dftr5 3945 repizf2lem 4002 reusv3 4295 tfi 4410 raliunxp 4590 fununi 5095 dff13 5561 dfsmo2 6066 tfr1onlemaccex 6127 tfrcllemaccex 6140 qliftfun 6388 prime 8899 raluz 9120 raluz2 9121 ralrp 9209 facwordi 10202 modfsummod 10906 isprm2 11431 isprm4 11433 bdcriota 12040 |
Copyright terms: Public domain | W3C validator |