![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impexp | Unicode version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 261 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm3.31 262 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 692 pm4.14dc 890 pm5.6dc 926 2sb6 1984 2sb6rf 1990 2exsb 2009 mor 2068 eu2 2070 moanim 2100 r2alf 2494 r3al 2521 r19.23t 2584 ceqsralt 2765 rspc2gv 2854 ralrab 2899 ralrab2 2903 euind 2925 reu2 2926 reu3 2928 rmo4 2931 rmo3f 2935 reuind 2943 rmo2ilem 3053 rmo3 3055 ralss 3222 rabss 3233 raldifb 3276 unissb 3840 elintrab 3857 ssintrab 3868 dftr5 4105 repizf2lem 4162 reusv3 4461 tfi 4582 raliunxp 4769 fununi 5285 dff13 5769 dfsmo2 6288 tfr1onlemaccex 6349 tfrcllemaccex 6362 qliftfun 6617 nnnninfeq2 7127 prime 9352 raluz 9578 raluz2 9579 ralrp 9675 facwordi 10720 modfsummod 11466 nnwosdc 12040 isprm2 12117 isprm4 12119 metcnp 14015 limcdifap 14134 bdcriota 14638 |
Copyright terms: Public domain | W3C validator |