| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impexp | Unicode version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 261 |
. 2
| |
| 2 | pm3.31 262 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 693 pm4.14dc 891 pm5.6dc 927 2sb6 2011 2sb6rf 2017 2exsb 2036 mor 2095 eu2 2097 moanim 2127 r2alf 2522 r3al 2549 r19.23t 2612 ceqsralt 2798 rspc2gv 2888 ralrab 2933 ralrab2 2937 euind 2959 reu2 2960 reu3 2962 rmo4 2965 rmo3f 2969 reuind 2977 rmo2ilem 3087 rmo3 3089 ralss 3258 rabss 3269 raldifb 3312 unissb 3879 elintrab 3896 ssintrab 3907 dftr5 4144 repizf2lem 4204 reusv3 4506 tfi 4629 raliunxp 4818 fununi 5341 dff13 5836 dfsmo2 6372 tfr1onlemaccex 6433 tfrcllemaccex 6446 qliftfun 6703 nnnninfeq2 7230 prime 9471 raluz 9698 raluz2 9699 ralrp 9796 facwordi 10883 modfsummod 11740 nnwosdc 12331 isprm2 12410 isprm4 12412 metcnp 14955 limcdifap 15105 bdcriota 15781 nnnninfex 15921 |
| Copyright terms: Public domain | W3C validator |