![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impexp | Unicode version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 261 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm3.31 262 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 693 pm4.14dc 891 pm5.6dc 927 2sb6 2000 2sb6rf 2006 2exsb 2025 mor 2084 eu2 2086 moanim 2116 r2alf 2511 r3al 2538 r19.23t 2601 ceqsralt 2787 rspc2gv 2877 ralrab 2922 ralrab2 2926 euind 2948 reu2 2949 reu3 2951 rmo4 2954 rmo3f 2958 reuind 2966 rmo2ilem 3076 rmo3 3078 ralss 3246 rabss 3257 raldifb 3300 unissb 3866 elintrab 3883 ssintrab 3894 dftr5 4131 repizf2lem 4191 reusv3 4492 tfi 4615 raliunxp 4804 fununi 5323 dff13 5812 dfsmo2 6342 tfr1onlemaccex 6403 tfrcllemaccex 6416 qliftfun 6673 nnnninfeq2 7190 prime 9419 raluz 9646 raluz2 9647 ralrp 9744 facwordi 10814 modfsummod 11604 nnwosdc 12179 isprm2 12258 isprm4 12260 metcnp 14691 limcdifap 14841 bdcriota 15445 |
Copyright terms: Public domain | W3C validator |