![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4id | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr4id.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr4id.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr4id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4id.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr4id.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | bitr2di 197 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imimorbdc 897 baib 920 pm5.6dc 927 xornbidc 1402 mo2dc 2097 reu8 2956 sbc6g 3010 dfss4st 3392 r19.28m 3536 r19.45mv 3540 r19.44mv 3541 r19.27m 3542 ralsnsg 3655 ralsns 3656 iunconstm 3920 iinconstm 3921 exmidsssnc 4232 unisucg 4445 relsng 4762 funssres 5296 fncnv 5320 dff1o5 5509 funimass4 5607 fneqeql2 5667 fnniniseg2 5681 rexsupp 5682 unpreima 5683 dffo3 5705 funfvima 5790 dff13 5811 f1eqcocnv 5834 fliftf 5842 isocnv2 5855 eloprabga 6005 mpo2eqb 6028 opabex3d 6173 opabex3 6174 elxp6 6222 elxp7 6223 sbthlemi5 7020 sbthlemi6 7021 nninfwlporlemd 7231 genpdflem 7567 ltnqpr 7653 ltexprlemloc 7667 xrlenlt 8084 negcon2 8272 dfinfre 8975 sup3exmid 8976 elznn 9333 zq 9691 rpnegap 9752 modqmuladdnn0 10439 shftdm 10966 rexfiuz 11133 rexanuz2 11135 sumsplitdc 11575 fsum2dlemstep 11577 odd2np1 12014 divalgb 12066 infssuzex 12086 nninfctlemfo 12177 isprm4 12257 ctiunctlemudc 12594 grp1 13178 nmznsg 13283 qusecsub 13401 iscrng2 13511 opprsubgg 13580 opprsubrngg 13707 domnmuln0 13769 tx1cn 14437 tx2cn 14438 cnbl0 14702 cnblcld 14703 reopnap 14706 pilem1 14914 sinq34lt0t 14966 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |