| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4id | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr4id.2 |
|
| bitr4id.1 |
|
| Ref | Expression |
|---|---|
| bitr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4id.1 |
. 2
| |
| 2 | bitr4id.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitr2di 197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imimorbdc 897 baib 920 pm5.6dc 927 xornbidc 1402 mo2dc 2100 reu8 2960 sbc6g 3014 dfss4st 3396 r19.28m 3540 r19.45mv 3544 r19.44mv 3545 r19.27m 3546 ralsnsg 3659 ralsns 3660 iunconstm 3924 iinconstm 3925 exmidsssnc 4236 unisucg 4449 relsng 4766 funssres 5300 fncnv 5324 dff1o5 5513 funimass4 5611 fneqeql2 5671 fnniniseg2 5685 rexsupp 5686 unpreima 5687 dffo3 5709 funfvima 5794 dff13 5815 f1eqcocnv 5838 fliftf 5846 isocnv2 5859 eloprabga 6009 mpo2eqb 6032 opabex3d 6178 opabex3 6179 elxp6 6227 elxp7 6228 sbthlemi5 7027 sbthlemi6 7028 nninfwlporlemd 7238 genpdflem 7574 ltnqpr 7660 ltexprlemloc 7674 xrlenlt 8091 negcon2 8279 dfinfre 8983 sup3exmid 8984 elznn 9342 zq 9700 rpnegap 9761 infssuzex 10323 modqmuladdnn0 10460 shftdm 10987 rexfiuz 11154 rexanuz2 11156 sumsplitdc 11597 fsum2dlemstep 11599 odd2np1 12038 divalgb 12090 nninfctlemfo 12207 isprm4 12287 ctiunctlemudc 12654 grp1 13238 nmznsg 13343 qusecsub 13461 iscrng2 13571 opprsubgg 13640 opprsubrngg 13767 domnmuln0 13829 tx1cn 14505 tx2cn 14506 cnbl0 14770 cnblcld 14771 reopnap 14782 pilem1 15015 sinq34lt0t 15067 gausslemma2dlem1a 15299 |
| Copyright terms: Public domain | W3C validator |