| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4id | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr4id.2 |
|
| bitr4id.1 |
|
| Ref | Expression |
|---|---|
| bitr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4id.1 |
. 2
| |
| 2 | bitr4id.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitr2di 197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imimorbdc 897 baib 920 pm5.6dc 927 xornbidc 1402 mo2dc 2100 reu8 2960 sbc6g 3014 dfss4st 3397 r19.28m 3541 r19.45mv 3545 r19.44mv 3546 r19.27m 3547 ralsnsg 3660 ralsns 3661 iunconstm 3925 iinconstm 3926 exmidsssnc 4237 unisucg 4450 relsng 4767 funssres 5301 fncnv 5325 dff1o5 5516 funimass4 5614 fneqeql2 5674 fnniniseg2 5688 rexsupp 5689 unpreima 5690 dffo3 5712 funfvima 5797 dff13 5818 f1eqcocnv 5841 fliftf 5849 isocnv2 5862 eloprabga 6013 mpo2eqb 6036 opabex3d 6187 opabex3 6188 elxp6 6236 elxp7 6237 sbthlemi5 7036 sbthlemi6 7037 nninfwlporlemd 7247 genpdflem 7593 ltnqpr 7679 ltexprlemloc 7693 xrlenlt 8110 negcon2 8298 dfinfre 9002 sup3exmid 9003 elznn 9361 zq 9719 rpnegap 9780 infssuzex 10342 modqmuladdnn0 10479 shftdm 11006 rexfiuz 11173 rexanuz2 11175 sumsplitdc 11616 fsum2dlemstep 11618 odd2np1 12057 divalgb 12109 nninfctlemfo 12234 isprm4 12314 ctiunctlemudc 12681 grp1 13310 nmznsg 13421 qusecsub 13539 iscrng2 13649 opprsubgg 13718 opprsubrngg 13845 domnmuln0 13907 tx1cn 14591 tx2cn 14592 cnbl0 14856 cnblcld 14857 reopnap 14868 pilem1 15101 sinq34lt0t 15153 gausslemma2dlem1a 15385 |
| Copyright terms: Public domain | W3C validator |