| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4id | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr4id.2 |
|
| bitr4id.1 |
|
| Ref | Expression |
|---|---|
| bitr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4id.1 |
. 2
| |
| 2 | bitr4id.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitr2di 197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imimorbdc 901 baib 924 pm5.6dc 931 ifptru 995 ifpfal 996 xornbidc 1433 mo2dc 2133 reu8 2999 sbc6g 3053 dfss4st 3437 r19.28m 3581 r19.45mv 3585 r19.44mv 3586 r19.27m 3587 ralsnsg 3703 ralsns 3704 iunconstm 3973 iinconstm 3974 exmidsssnc 4287 unisucg 4505 relsng 4822 funssres 5360 fncnv 5387 dff1o5 5583 funimass4 5686 fneqeql2 5746 fnniniseg2 5760 rexsupp 5761 unpreima 5762 dffo3 5784 funfvima 5875 dff13 5898 f1eqcocnv 5921 fliftf 5929 isocnv2 5942 eloprabga 6097 mpo2eqb 6120 opabex3d 6272 opabex3 6273 elxp6 6321 elxp7 6322 sbthlemi5 7136 sbthlemi6 7137 nninfwlporlemd 7347 genpdflem 7702 ltnqpr 7788 ltexprlemloc 7802 xrlenlt 8219 negcon2 8407 dfinfre 9111 sup3exmid 9112 elznn 9470 zq 9829 rpnegap 9890 infssuzex 10461 modqmuladdnn0 10598 shftdm 11341 rexfiuz 11508 rexanuz2 11510 sumsplitdc 11951 fsum2dlemstep 11953 odd2np1 12392 divalgb 12444 nninfctlemfo 12569 isprm4 12649 ctiunctlemudc 13016 grp1 13647 nmznsg 13758 qusecsub 13876 iscrng2 13986 opprsubgg 14055 opprsubrngg 14183 domnmuln0 14245 tx1cn 14951 tx2cn 14952 cnbl0 15216 cnblcld 15217 reopnap 15228 pilem1 15461 sinq34lt0t 15513 gausslemma2dlem1a 15745 |
| Copyright terms: Public domain | W3C validator |