| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4id | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr4id.2 |
|
| bitr4id.1 |
|
| Ref | Expression |
|---|---|
| bitr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4id.1 |
. 2
| |
| 2 | bitr4id.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitr2di 197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imimorbdc 897 baib 920 pm5.6dc 927 xornbidc 1402 mo2dc 2100 reu8 2960 sbc6g 3014 dfss4st 3397 r19.28m 3541 r19.45mv 3545 r19.44mv 3546 r19.27m 3547 ralsnsg 3660 ralsns 3661 iunconstm 3925 iinconstm 3926 exmidsssnc 4237 unisucg 4450 relsng 4767 funssres 5301 fncnv 5325 dff1o5 5516 funimass4 5614 fneqeql2 5674 fnniniseg2 5688 rexsupp 5689 unpreima 5690 dffo3 5712 funfvima 5797 dff13 5818 f1eqcocnv 5841 fliftf 5849 isocnv2 5862 eloprabga 6013 mpo2eqb 6036 opabex3d 6187 opabex3 6188 elxp6 6236 elxp7 6237 sbthlemi5 7036 sbthlemi6 7037 nninfwlporlemd 7247 genpdflem 7591 ltnqpr 7677 ltexprlemloc 7691 xrlenlt 8108 negcon2 8296 dfinfre 9000 sup3exmid 9001 elznn 9359 zq 9717 rpnegap 9778 infssuzex 10340 modqmuladdnn0 10477 shftdm 11004 rexfiuz 11171 rexanuz2 11173 sumsplitdc 11614 fsum2dlemstep 11616 odd2np1 12055 divalgb 12107 nninfctlemfo 12232 isprm4 12312 ctiunctlemudc 12679 grp1 13308 nmznsg 13419 qusecsub 13537 iscrng2 13647 opprsubgg 13716 opprsubrngg 13843 domnmuln0 13905 tx1cn 14589 tx2cn 14590 cnbl0 14854 cnblcld 14855 reopnap 14866 pilem1 15099 sinq34lt0t 15151 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |