ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmobidva Unicode version

Theorem rmobidva 2695
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobidva.1  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rmobidva  |-  ( ph  ->  ( E* x  e.  A  ps  <->  E* x  e.  A  ch )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem rmobidva
StepHypRef Expression
1 nfv 1552 . 2  |-  F/ x ph
2 rmobidva.1 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
31, 2rmobida 2694 1  |-  ( ph  ->  ( E* x  e.  A  ps  <->  E* x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2177   E*wrmo 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-eu 2058  df-mo 2059  df-rmo 2493
This theorem is referenced by:  rmobidv  2696
  Copyright terms: Public domain W3C validator