ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-eu Unicode version

Definition df-eu 2080
Description: Define existential uniqueness, i.e., "there exists exactly one  x such that  ph". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2102, eu2 2122, eu3 2124, and eu5 2125 (which in some cases we show with a hypothesis  ph 
->  A. y ph in place of a distinct variable condition on 
y and  ph). Double uniqueness is tricky:  E! x E! y ph does not mean "exactly one  x and one  y " (see 2eu4 2171). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-eu  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Detailed syntax breakdown of Definition df-eu
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
31, 2weu 2077 . 2  wff  E! x ph
4 vy . . . . . 6  setvar  y
52, 4weq 1549 . . . . 5  wff  x  =  y
61, 5wb 105 . . . 4  wff  ( ph  <->  x  =  y )
76, 2wal 1393 . . 3  wff  A. x
( ph  <->  x  =  y
)
87, 4wex 1538 . 2  wff  E. y A. x ( ph  <->  x  =  y )
93, 8wb 105 1  wff  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Colors of variables: wff set class
This definition is referenced by:  euf  2082  eubidh  2083  eubid  2084  hbeu1  2087  nfeu1  2088  sb8eu  2090  nfeudv  2092  nfeuv  2095  sb8euh  2100  exists1  2174  cbvreuvw  2771  reu6  2992  euabsn2  3735  euotd  4340  iotauni  5287  iota1  5289  iotanul  5290  euiotaex  5291  iota4  5294  eliotaeu  5303  fv3  5646  eufnfv  5863
  Copyright terms: Public domain W3C validator