ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-eu Unicode version

Definition df-eu 2022
Description: Define existential uniqueness, i.e., "there exists exactly one  x such that  ph". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2044, eu2 2063, eu3 2065, and eu5 2066 (which in some cases we show with a hypothesis  ph 
->  A. y ph in place of a distinct variable condition on 
y and  ph). Double uniqueness is tricky:  E! x E! y ph does not mean "exactly one  x and one  y " (see 2eu4 2112). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-eu  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Detailed syntax breakdown of Definition df-eu
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
31, 2weu 2019 . 2  wff  E! x ph
4 vy . . . . . 6  setvar  y
52, 4weq 1496 . . . . 5  wff  x  =  y
61, 5wb 104 . . . 4  wff  ( ph  <->  x  =  y )
76, 2wal 1346 . . 3  wff  A. x
( ph  <->  x  =  y
)
87, 4wex 1485 . 2  wff  E. y A. x ( ph  <->  x  =  y )
93, 8wb 104 1  wff  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Colors of variables: wff set class
This definition is referenced by:  euf  2024  eubidh  2025  eubid  2026  hbeu1  2029  nfeu1  2030  sb8eu  2032  nfeudv  2034  nfeuv  2037  sb8euh  2042  exists1  2115  cbvreuvw  2702  reu6  2919  euabsn2  3650  euotd  4237  iotauni  5170  iota1  5172  iotanul  5173  euiotaex  5174  iota4  5176  eliotaeu  5185  fv3  5517  eufnfv  5724
  Copyright terms: Public domain W3C validator