ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-eu Unicode version

Definition df-eu 2017
Description: Define existential uniqueness, i.e., "there exists exactly one  x such that  ph". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2039, eu2 2058, eu3 2060, and eu5 2061 (which in some cases we show with a hypothesis  ph 
->  A. y ph in place of a distinct variable condition on 
y and  ph). Double uniqueness is tricky:  E! x E! y ph does not mean "exactly one  x and one  y " (see 2eu4 2107). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-eu  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Detailed syntax breakdown of Definition df-eu
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
31, 2weu 2014 . 2  wff  E! x ph
4 vy . . . . . 6  setvar  y
52, 4weq 1491 . . . . 5  wff  x  =  y
61, 5wb 104 . . . 4  wff  ( ph  <->  x  =  y )
76, 2wal 1341 . . 3  wff  A. x
( ph  <->  x  =  y
)
87, 4wex 1480 . 2  wff  E. y A. x ( ph  <->  x  =  y )
93, 8wb 104 1  wff  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Colors of variables: wff set class
This definition is referenced by:  euf  2019  eubidh  2020  eubid  2021  hbeu1  2024  nfeu1  2025  sb8eu  2027  nfeudv  2029  nfeuv  2032  sb8euh  2037  exists1  2110  cbvreuvw  2697  reu6  2914  euabsn2  3644  euotd  4231  iotauni  5164  iota1  5166  iotanul  5167  euiotaex  5168  iota4  5170  fv3  5508  eufnfv  5714
  Copyright terms: Public domain W3C validator