ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-eu Unicode version

Definition df-eu 2045
Description: Define existential uniqueness, i.e., "there exists exactly one  x such that  ph". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2067, eu2 2086, eu3 2088, and eu5 2089 (which in some cases we show with a hypothesis  ph 
->  A. y ph in place of a distinct variable condition on 
y and  ph). Double uniqueness is tricky:  E! x E! y ph does not mean "exactly one  x and one  y " (see 2eu4 2135). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-eu  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Detailed syntax breakdown of Definition df-eu
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
31, 2weu 2042 . 2  wff  E! x ph
4 vy . . . . . 6  setvar  y
52, 4weq 1514 . . . . 5  wff  x  =  y
61, 5wb 105 . . . 4  wff  ( ph  <->  x  =  y )
76, 2wal 1362 . . 3  wff  A. x
( ph  <->  x  =  y
)
87, 4wex 1503 . 2  wff  E. y A. x ( ph  <->  x  =  y )
93, 8wb 105 1  wff  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Colors of variables: wff set class
This definition is referenced by:  euf  2047  eubidh  2048  eubid  2049  hbeu1  2052  nfeu1  2053  sb8eu  2055  nfeudv  2057  nfeuv  2060  sb8euh  2065  exists1  2138  cbvreuvw  2732  reu6  2949  euabsn2  3687  euotd  4283  iotauni  5227  iota1  5229  iotanul  5230  euiotaex  5231  iota4  5234  eliotaeu  5243  fv3  5577  eufnfv  5789
  Copyright terms: Public domain W3C validator