ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-eu Unicode version

Definition df-eu 2048
Description: Define existential uniqueness, i.e., "there exists exactly one  x such that  ph". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2070, eu2 2089, eu3 2091, and eu5 2092 (which in some cases we show with a hypothesis  ph 
->  A. y ph in place of a distinct variable condition on 
y and  ph). Double uniqueness is tricky:  E! x E! y ph does not mean "exactly one  x and one  y " (see 2eu4 2138). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-eu  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Detailed syntax breakdown of Definition df-eu
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
31, 2weu 2045 . 2  wff  E! x ph
4 vy . . . . . 6  setvar  y
52, 4weq 1517 . . . . 5  wff  x  =  y
61, 5wb 105 . . . 4  wff  ( ph  <->  x  =  y )
76, 2wal 1362 . . 3  wff  A. x
( ph  <->  x  =  y
)
87, 4wex 1506 . 2  wff  E. y A. x ( ph  <->  x  =  y )
93, 8wb 105 1  wff  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Colors of variables: wff set class
This definition is referenced by:  euf  2050  eubidh  2051  eubid  2052  hbeu1  2055  nfeu1  2056  sb8eu  2058  nfeudv  2060  nfeuv  2063  sb8euh  2068  exists1  2141  cbvreuvw  2735  reu6  2953  euabsn2  3691  euotd  4287  iotauni  5231  iota1  5233  iotanul  5234  euiotaex  5235  iota4  5238  eliotaeu  5247  fv3  5581  eufnfv  5793
  Copyright terms: Public domain W3C validator