ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2comg Unicode version

Theorem simplbi2comg 1431
Description: Implication form of simplbi2com 1432. (Contributed by Alan Sare, 22-Jul-2012.)
Assertion
Ref Expression
simplbi2comg  |-  ( (
ph 
<->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )

Proof of Theorem simplbi2comg
StepHypRef Expression
1 biimpr 129 . 2  |-  ( (
ph 
<->  ( ps  /\  ch ) )  ->  (
( ps  /\  ch )  ->  ph ) )
21expcomd 1429 1  |-  ( (
ph 
<->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator