Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simplbi2comg | GIF version |
Description: Implication form of simplbi2com 1437. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
simplbi2comg | ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr 129 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → ((𝜓 ∧ 𝜒) → 𝜑)) | |
2 | 1 | expcomd 1434 | 1 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |