ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expdcom Unicode version

Theorem expdcom 1419
Description: Commuted form of expd 256. (Contributed by Alan Sare, 18-Mar-2012.)
Hypothesis
Ref Expression
expdcom.1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
expdcom  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )

Proof of Theorem expdcom
StepHypRef Expression
1 expdcom.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
21expd 256 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32com3l 81 1  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  nndi  6388  nnmass  6389  mulexp  10361  expadd  10364  expmul  10367
  Copyright terms: Public domain W3C validator