ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcomd Unicode version

Theorem expcomd 1462
Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.)
Hypothesis
Ref Expression
expcomd.1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
expcomd  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )

Proof of Theorem expcomd
StepHypRef Expression
1 expcomd.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
21expd 258 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32com23 78 1  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  simplbi2comg  1464  2moswapdc  2145  indifdir  3433  reupick  3461  issod  4374  poxp  6331  smores2  6393  smoiun  6400  mapxpen  6960  f1dmvrnfibi  7061  recexprlemm  7757  ltleletr  8174  fzind  9508  iccid  10067  ssfzo12bi  10376  dvdsabseq  12233  divalgb  12311  cncongr1  12500  difsqpwdvds  12736  lss1d  14220  txlm  14826  blsscls2  15040  metcnpi3  15064
  Copyright terms: Public domain W3C validator