ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcomd Unicode version

Theorem expcomd 1421
Description: Deduction form of expcom 115. (Contributed by Alan Sare, 22-Jul-2012.)
Hypothesis
Ref Expression
expcomd.1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
expcomd  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )

Proof of Theorem expcomd
StepHypRef Expression
1 expcomd.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
21expd 256 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32com23 78 1  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  simplbi2comg  1423  2moswapdc  2096  indifdir  3363  reupick  3391  issod  4278  poxp  6173  smores2  6235  smoiun  6242  mapxpen  6786  f1dmvrnfibi  6881  recexprlemm  7527  ltleletr  7942  fzind  9262  iccid  9811  ssfzo12bi  10106  dvdsabseq  11720  divalgb  11797  cncongr1  11960  txlm  12639  blsscls2  12853  metcnpi3  12877
  Copyright terms: Public domain W3C validator