ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcomd Unicode version

Theorem expcomd 1452
Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.)
Hypothesis
Ref Expression
expcomd.1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
expcomd  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )

Proof of Theorem expcomd
StepHypRef Expression
1 expcomd.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
21expd 258 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32com23 78 1  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  simplbi2comg  1454  2moswapdc  2135  indifdir  3419  reupick  3447  issod  4354  poxp  6290  smores2  6352  smoiun  6359  mapxpen  6909  f1dmvrnfibi  7010  recexprlemm  7691  ltleletr  8108  fzind  9441  iccid  10000  ssfzo12bi  10301  dvdsabseq  12012  divalgb  12090  cncongr1  12271  difsqpwdvds  12507  lss1d  13939  txlm  14515  blsscls2  14729  metcnpi3  14753
  Copyright terms: Public domain W3C validator