ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcomd Unicode version

Theorem expcomd 1429
Description: Deduction form of expcom 115. (Contributed by Alan Sare, 22-Jul-2012.)
Hypothesis
Ref Expression
expcomd.1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
expcomd  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )

Proof of Theorem expcomd
StepHypRef Expression
1 expcomd.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
21expd 256 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32com23 78 1  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  simplbi2comg  1431  2moswapdc  2104  indifdir  3378  reupick  3406  issod  4297  poxp  6200  smores2  6262  smoiun  6269  mapxpen  6814  f1dmvrnfibi  6909  recexprlemm  7565  ltleletr  7980  fzind  9306  iccid  9861  ssfzo12bi  10160  dvdsabseq  11785  divalgb  11862  cncongr1  12035  difsqpwdvds  12269  txlm  12919  blsscls2  13133  metcnpi3  13157
  Copyright terms: Public domain W3C validator