ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simprr1 Unicode version

Theorem simprr1 1029
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simprr1  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )

Proof of Theorem simprr1
StepHypRef Expression
1 simpr1 987 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ph )
21adantl 275 1  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 964
This theorem is referenced by:  icodiamlt  10964  summodc  11164  prodmodc  11359
  Copyright terms: Public domain W3C validator