ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodc Unicode version

Theorem prodmodc 11860
Description: A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmodc.3  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
Assertion
Ref Expression
prodmodc  |-  ( ph  ->  E* x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )
Distinct variable groups:    A, f, j, k, m, x    B, f, j, m    f, F, k, m, x    j, G, x    ph, f, k, m, x    x, n   
x, y
Allowed substitution hints:    ph( y, j, n)    A( y, n)    B( x, y, k, n)    F( y,
j, n)    G( y,
f, k, m, n)

Proof of Theorem prodmodc
Dummy variables  a  g  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  A  C_  ( ZZ>=
`  m ) )
2 simplr 528 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
3 simprr 531 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  seq m
(  x.  ,  F
)  ~~>  x )
41, 2, 33jca 1179 . . . . . . 7  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )
54reximi 2602 . . . . . 6  |-  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )
6 simpll 527 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  A  C_  ( ZZ>=
`  m ) )
7 simplr 528 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
8 simprr 531 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  seq m
(  x.  ,  F
)  ~~>  z )
96, 7, 83jca 1179 . . . . . . 7  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )
109reximi 2602 . . . . . 6  |-  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )
11 fveq2 5575 . . . . . . . . . . . 12  |-  ( m  =  w  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  w )
)
1211sseq2d 3222 . . . . . . . . . . 11  |-  ( m  =  w  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  w ) ) )
1311raleqdv 2707 . . . . . . . . . . 11  |-  ( m  =  w  ->  ( A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A  <->  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A ) )
14 seqeq1 10593 . . . . . . . . . . . 12  |-  ( m  =  w  ->  seq m (  x.  ,  F )  =  seq w (  x.  ,  F ) )
1514breq1d 4053 . . . . . . . . . . 11  |-  ( m  =  w  ->  (  seq m (  x.  ,  F )  ~~>  z  <->  seq w
(  x.  ,  F
)  ~~>  z ) )
1612, 13, 153anbi123d 1324 . . . . . . . . . 10  |-  ( m  =  w  ->  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  z )  <-> 
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )
1716cbvrexvw 2742 . . . . . . . . 9  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z )  <->  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) )
1817anbi2i 457 . . . . . . . 8  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) ) )
19 reeanv 2675 . . . . . . . 8  |-  ( E. m  e.  ZZ  E. w  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) ) )
2018, 19bitr4i 187 . . . . . . 7  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )  <->  E. m  e.  ZZ  E. w  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) ) )
21 simprl3 1046 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  seq m (  x.  ,  F )  ~~>  x )
2221adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  seq m (  x.  ,  F )  ~~>  x )
23 prodmo.1 . . . . . . . . . . . . 13  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
24 prodmo.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2524adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  A )  ->  B  e.  CC )
26 simprll 537 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  m  e.  ZZ )
27 simprlr 538 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  w  e.  ZZ )
28 simprl1 1044 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  A  C_  ( ZZ>= `  m )
)
2928adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  A  C_  ( ZZ>= `  m
) )
30 simprr1 1047 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  A  C_  ( ZZ>= `  w )
)
3130adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  A  C_  ( ZZ>= `  w
) )
32 eleq1w 2265 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
3332dcbid 839 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
34 simprl2 1045 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
3534ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  m ) )  ->  A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A )
36 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  m ) )  -> 
k  e.  ( ZZ>= `  m ) )
3733, 35, 36rspcdva 2881 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  m ) )  -> DECID  k  e.  A )
38 simprr2 1048 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A )
3938ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  w ) )  ->  A. j  e.  ( ZZ>=
`  w )DECID  j  e.  A )
40 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  w ) )  -> 
k  e.  ( ZZ>= `  w ) )
4133, 39, 40rspcdva 2881 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  w ) )  -> DECID  k  e.  A )
4223, 25, 26, 27, 29, 31, 37, 41prodrbdc 11856 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  -> 
(  seq m (  x.  ,  F )  ~~>  x  <->  seq w
(  x.  ,  F
)  ~~>  x ) )
4322, 42mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  seq w (  x.  ,  F )  ~~>  x )
44 simprr3 1049 . . . . . . . . . . . 12  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  seq w (  x.  ,  F )  ~~>  z )
4544adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  seq w (  x.  ,  F )  ~~>  z )
46 climuni 11575 . . . . . . . . . . 11  |-  ( (  seq w (  x.  ,  F )  ~~>  x  /\  seq w (  x.  ,  F )  ~~>  z )  ->  x  =  z )
4743, 45, 46syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  x  =  z )
4847expcom 116 . . . . . . . . 9  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  ( ph  ->  x  =  z ) )
4948ex 115 . . . . . . . 8  |-  ( ( m  e.  ZZ  /\  w  e.  ZZ )  ->  ( ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) )  ->  ( ph  ->  x  =  z ) ) )
5049rexlimivv 2628 . . . . . . 7  |-  ( E. m  e.  ZZ  E. w  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) )  ->  ( ph  ->  x  =  z ) )
5120, 50sylbi 121 . . . . . 6  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )  ->  ( ph  ->  x  =  z ) )
525, 10, 51syl2an 289 . . . . 5  |-  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )  ->  ( ph  ->  x  =  z ) )
53 prodmodc.3 . . . . . . . . . 10  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
5423, 24, 53prodmodclem2 11859 . . . . . . . . 9  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  -> 
z  =  x ) )
55 equcomi 1726 . . . . . . . . 9  |-  ( z  =  x  ->  x  =  z )
5654, 55syl6 33 . . . . . . . 8  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
5756expimpd 363 . . . . . . 7  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  ->  x  =  z )
)
5857com12 30 . . . . . 6  |-  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  -> 
( ph  ->  x  =  z ) )
5958ancoms 268 . . . . 5  |-  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )  ->  ( ph  ->  x  =  z ) )
6023, 24, 53prodmodclem2 11859 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
6160expimpd 363 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  ->  x  =  z )
)
6261com12 30 . . . . 5  |-  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  -> 
( ph  ->  x  =  z ) )
63 reeanv 2675 . . . . . . . 8  |-  ( E. m  e.  NN  E. w  e.  NN  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. w  e.  NN  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
64 exdistrv 1933 . . . . . . . . 9  |-  ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
65642rexbii 2514 . . . . . . . 8  |-  ( E. m  e.  NN  E. w  e.  NN  E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  E. m  e.  NN  E. w  e.  NN  ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
66 oveq2 5951 . . . . . . . . . . . . . 14  |-  ( m  =  w  ->  (
1 ... m )  =  ( 1 ... w
) )
6766f1oeq2d 5517 . . . . . . . . . . . . 13  |-  ( m  =  w  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... w
)
-1-1-onto-> A ) )
68 fveq2 5575 . . . . . . . . . . . . . 14  |-  ( m  =  w  ->  (  seq 1 (  x.  ,  G ) `  m
)  =  (  seq 1 (  x.  ,  G ) `  w
) )
6968eqeq2d 2216 . . . . . . . . . . . . 13  |-  ( m  =  w  ->  (
z  =  (  seq 1 (  x.  ,  G ) `  m
)  <->  z  =  (  seq 1 (  x.  ,  G ) `  w ) ) )
7067, 69anbi12d 473 . . . . . . . . . . . 12  |-  ( m  =  w  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  ( f : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `
 w ) ) ) )
7170exbidv 1847 . . . . . . . . . . 11  |-  ( m  =  w  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  w ) ) ) )
72 f1oeq1 5509 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
f : ( 1 ... w ) -1-1-onto-> A  <->  g :
( 1 ... w
)
-1-1-onto-> A ) )
73 fveq1 5574 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  g  ->  (
f `  j )  =  ( g `  j ) )
7473csbeq1d 3099 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  g  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( g `  j )  /  k ]_ B )
7574ifeq1d 3587 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  g  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) )
7675mpteq2dv 4134 . . . . . . . . . . . . . . . . 17  |-  ( f  =  g  ->  (
j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
g `  j )  /  k ]_ B ,  1 ) ) )
7753, 76eqtrid 2249 . . . . . . . . . . . . . . . 16  |-  ( f  =  g  ->  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) )
7877seqeq3d 10598 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  seq 1 (  x.  ,  G )  =  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) )
7978fveq1d 5577 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  (  seq 1 (  x.  ,  G ) `  w
)  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) `  w
) )
8079eqeq2d 2216 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
z  =  (  seq 1 (  x.  ,  G ) `  w
)  <->  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )
8172, 80anbi12d 473 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( f : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  w ) )  <->  ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
g `  j )  /  k ]_ B ,  1 ) ) ) `  w ) ) ) )
8281cbvexvw 1943 . . . . . . . . . . 11  |-  ( E. f ( f : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  w ) )  <->  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )
8371, 82bitrdi 196 . . . . . . . . . 10  |-  ( m  =  w  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
8483cbvrexvw 2742 . . . . . . . . 9  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. w  e.  NN  E. g ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) `  w
) ) )
8584anbi2i 457 . . . . . . . 8  |-  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  <-> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) )  /\  E. w  e.  NN  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
8663, 65, 853bitr4i 212 . . . . . . 7  |-  ( E. m  e.  NN  E. w  e.  NN  E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
87 an4 586 . . . . . . . . . 10  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  ( (
f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w ) -1-1-onto-> A )  /\  (
x  =  (  seq 1 (  x.  ,  G ) `  m
)  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
8824ad4ant14 514 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
89 breq1 4046 . . . . . . . . . . . . . . . 16  |-  ( j  =  a  ->  (
j  <_  ( `  A
)  <->  a  <_  ( `  A ) ) )
90 fveq2 5575 . . . . . . . . . . . . . . . . 17  |-  ( j  =  a  ->  (
f `  j )  =  ( f `  a ) )
9190csbeq1d 3099 . . . . . . . . . . . . . . . 16  |-  ( j  =  a  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( f `  a )  /  k ]_ B )
9289, 91ifbieq1d 3592 . . . . . . . . . . . . . . 15  |-  ( j  =  a  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( a  <_  ( `  A ) ,  [_ ( f `  a )  /  k ]_ B ,  1 ) )
9392cbvmptv 4139 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
f `  j )  /  k ]_ B ,  1 ) )  =  ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  [_ ( f `  a )  /  k ]_ B ,  1 ) )
9453, 93eqtri 2225 . . . . . . . . . . . . 13  |-  G  =  ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  [_ ( f `  a
)  /  k ]_ B ,  1 ) )
95 fveq2 5575 . . . . . . . . . . . . . . . 16  |-  ( j  =  a  ->  (
g `  j )  =  ( g `  a ) )
9695csbeq1d 3099 . . . . . . . . . . . . . . 15  |-  ( j  =  a  ->  [_ (
g `  j )  /  k ]_ B  =  [_ ( g `  a )  /  k ]_ B )
9789, 96ifbieq1d 3592 . . . . . . . . . . . . . 14  |-  ( j  =  a  ->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 )  =  if ( a  <_  ( `  A ) ,  [_ ( g `  a )  /  k ]_ B ,  1 ) )
9897cbvmptv 4139 . . . . . . . . . . . . 13  |-  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
g `  j )  /  k ]_ B ,  1 ) )  =  ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  [_ ( g `  a )  /  k ]_ B ,  1 ) )
99 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
( m  e.  NN  /\  w  e.  NN ) )
100 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
101 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
g : ( 1 ... w ) -1-1-onto-> A )
10223, 88, 94, 98, 99, 100, 101prodmodclem3 11857 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
(  seq 1 (  x.  ,  G ) `  m )  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) )
103 eqeq12 2217 . . . . . . . . . . . 12  |-  ( ( x  =  (  seq 1 (  x.  ,  G ) `  m
)  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) )  ->  (
x  =  z  <->  (  seq 1 (  x.  ,  G ) `  m
)  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) `  w
) ) )
104102, 103syl5ibrcom 157 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
( ( x  =  (  seq 1 (  x.  ,  G ) `
 m )  /\  z  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) `  w
) )  ->  x  =  z ) )
105104expimpd 363 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A )  /\  (
x  =  (  seq 1 (  x.  ,  G ) `  m
)  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  ->  x  =  z )
)
10687, 105biimtrid 152 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  ->  x  =  z )
)
107106exlimdvv 1920 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  -> 
( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  ->  x  =  z )
)
108107rexlimdvva 2630 . . . . . . 7  |-  ( ph  ->  ( E. m  e.  NN  E. w  e.  NN  E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  ->  x  =  z )
)
10986, 108biimtrrid 153 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) )  /\  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
110109com12 30 . . . . 5  |-  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  ( ph  ->  x  =  z ) )
11152, 59, 62, 110ccase 966 . . . 4  |-  ( ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )  ->  ( ph  ->  x  =  z ) )
112111com12 30 . . 3  |-  ( ph  ->  ( ( ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )  ->  x  =  z ) )
113112alrimivv 1897 . 2  |-  ( ph  ->  A. x A. z
( ( ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )  ->  x  =  z ) )
114 breq2 4047 . . . . . . 7  |-  ( x  =  z  ->  (  seq m (  x.  ,  F )  ~~>  x  <->  seq m
(  x.  ,  F
)  ~~>  z ) )
115114anbi2d 464 . . . . . 6  |-  ( x  =  z  ->  (
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x )  <-> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )
116115anbi2d 464 . . . . 5  |-  ( x  =  z  ->  (
( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) ) )
117116rexbidv 2506 . . . 4  |-  ( x  =  z  ->  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) ) )
118 eqeq1 2211 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  (  seq 1 (  x.  ,  G ) `  m
)  <->  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )
119118anbi2d 464 . . . . . 6  |-  ( x  =  z  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `
 m ) ) ) )
120119exbidv 1847 . . . . 5  |-  ( x  =  z  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
121120rexbidv 2506 . . . 4  |-  ( x  =  z  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )
122117, 121orbi12d 794 . . 3  |-  ( x  =  z  ->  (
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) ) )
123122mo4 2114 . 2  |-  ( E* x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  <->  A. x A. z ( ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )  ->  x  =  z ) )
124113, 123sylibr 134 1  |-  ( ph  ->  E* x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980   A.wal 1370    = wceq 1372   E.wex 1514   E*wmo 2054    e. wcel 2175   A.wral 2483   E.wrex 2484   [_csb 3092    C_ wss 3165   ifcif 3570   class class class wbr 4043    |-> cmpt 4104   -1-1-onto->wf1o 5269   ` cfv 5270  (class class class)co 5943   CCcc 7922   0cc0 7924   1c1 7925    x. cmul 7929    <_ cle 8107   # cap 8653   NNcn 9035   ZZcz 9371   ZZ>=cuz 9647   ...cfz 10129    seqcseq 10590  ♯chash 10918    ~~> cli 11560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-clim 11561
This theorem is referenced by:  fprodseq  11865
  Copyright terms: Public domain W3C validator