ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodc Unicode version

Theorem prodmodc 11617
Description: A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmodc.3  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
Assertion
Ref Expression
prodmodc  |-  ( ph  ->  E* x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )
Distinct variable groups:    A, f, j, k, m, x    B, f, j, m    f, F, k, m, x    j, G, x    ph, f, k, m, x    x, n   
x, y
Allowed substitution hints:    ph( y, j, n)    A( y, n)    B( x, y, k, n)    F( y,
j, n)    G( y,
f, k, m, n)

Proof of Theorem prodmodc
Dummy variables  a  g  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  A  C_  ( ZZ>=
`  m ) )
2 simplr 528 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
3 simprr 531 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  seq m
(  x.  ,  F
)  ~~>  x )
41, 2, 33jca 1179 . . . . . . 7  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )
54reximi 2587 . . . . . 6  |-  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )
6 simpll 527 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  A  C_  ( ZZ>=
`  m ) )
7 simplr 528 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
8 simprr 531 . . . . . . . 8  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  seq m
(  x.  ,  F
)  ~~>  z )
96, 7, 83jca 1179 . . . . . . 7  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )
109reximi 2587 . . . . . 6  |-  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )
11 fveq2 5534 . . . . . . . . . . . 12  |-  ( m  =  w  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  w )
)
1211sseq2d 3200 . . . . . . . . . . 11  |-  ( m  =  w  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  w ) ) )
1311raleqdv 2692 . . . . . . . . . . 11  |-  ( m  =  w  ->  ( A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A  <->  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A ) )
14 seqeq1 10478 . . . . . . . . . . . 12  |-  ( m  =  w  ->  seq m (  x.  ,  F )  =  seq w (  x.  ,  F ) )
1514breq1d 4028 . . . . . . . . . . 11  |-  ( m  =  w  ->  (  seq m (  x.  ,  F )  ~~>  z  <->  seq w
(  x.  ,  F
)  ~~>  z ) )
1612, 13, 153anbi123d 1323 . . . . . . . . . 10  |-  ( m  =  w  ->  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  z )  <-> 
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )
1716cbvrexvw 2723 . . . . . . . . 9  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z )  <->  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) )
1817anbi2i 457 . . . . . . . 8  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) ) )
19 reeanv 2660 . . . . . . . 8  |-  ( E. m  e.  ZZ  E. w  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) ) )
2018, 19bitr4i 187 . . . . . . 7  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )  <->  E. m  e.  ZZ  E. w  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) ) )
21 simprl3 1046 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  seq m (  x.  ,  F )  ~~>  x )
2221adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  seq m (  x.  ,  F )  ~~>  x )
23 prodmo.1 . . . . . . . . . . . . 13  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
24 prodmo.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2524adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  A )  ->  B  e.  CC )
26 simprll 537 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  m  e.  ZZ )
27 simprlr 538 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  w  e.  ZZ )
28 simprl1 1044 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  A  C_  ( ZZ>= `  m )
)
2928adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  A  C_  ( ZZ>= `  m
) )
30 simprr1 1047 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  A  C_  ( ZZ>= `  w )
)
3130adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  A  C_  ( ZZ>= `  w
) )
32 eleq1w 2250 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
3332dcbid 839 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
34 simprl2 1045 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
3534ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  m ) )  ->  A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A )
36 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  m ) )  -> 
k  e.  ( ZZ>= `  m ) )
3733, 35, 36rspcdva 2861 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  m ) )  -> DECID  k  e.  A )
38 simprr2 1048 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A )
3938ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  w ) )  ->  A. j  e.  ( ZZ>=
`  w )DECID  j  e.  A )
40 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  w ) )  -> 
k  e.  ( ZZ>= `  w ) )
4133, 39, 40rspcdva 2861 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  ( ZZ>= `  w ) )  -> DECID  k  e.  A )
4223, 25, 26, 27, 29, 31, 37, 41prodrbdc 11613 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  -> 
(  seq m (  x.  ,  F )  ~~>  x  <->  seq w
(  x.  ,  F
)  ~~>  x ) )
4322, 42mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  seq w (  x.  ,  F )  ~~>  x )
44 simprr3 1049 . . . . . . . . . . . 12  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  seq w (  x.  ,  F )  ~~>  z )
4544adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  seq w (  x.  ,  F )  ~~>  z )
46 climuni 11332 . . . . . . . . . . 11  |-  ( (  seq w (  x.  ,  F )  ~~>  x  /\  seq w (  x.  ,  F )  ~~>  z )  ->  x  =  z )
4743, 45, 46syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) ) )  ->  x  =  z )
4847expcom 116 . . . . . . . . 9  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) ) )  ->  ( ph  ->  x  =  z ) )
4948ex 115 . . . . . . . 8  |-  ( ( m  e.  ZZ  /\  w  e.  ZZ )  ->  ( ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  z ) )  ->  ( ph  ->  x  =  z ) ) )
5049rexlimivv 2613 . . . . . . 7  |-  ( E. m  e.  ZZ  E. w  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  z ) )  ->  ( ph  ->  x  =  z ) )
5120, 50sylbi 121 . . . . . 6  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  z ) )  ->  ( ph  ->  x  =  z ) )
525, 10, 51syl2an 289 . . . . 5  |-  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )  ->  ( ph  ->  x  =  z ) )
53 prodmodc.3 . . . . . . . . . 10  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
5423, 24, 53prodmodclem2 11616 . . . . . . . . 9  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  -> 
z  =  x ) )
55 equcomi 1715 . . . . . . . . 9  |-  ( z  =  x  ->  x  =  z )
5654, 55syl6 33 . . . . . . . 8  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
5756expimpd 363 . . . . . . 7  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  ->  x  =  z )
)
5857com12 30 . . . . . 6  |-  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  -> 
( ph  ->  x  =  z ) )
5958ancoms 268 . . . . 5  |-  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )  ->  ( ph  ->  x  =  z ) )
6023, 24, 53prodmodclem2 11616 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
6160expimpd 363 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  ->  x  =  z )
)
6261com12 30 . . . . 5  |-  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  -> 
( ph  ->  x  =  z ) )
63 reeanv 2660 . . . . . . . 8  |-  ( E. m  e.  NN  E. w  e.  NN  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. w  e.  NN  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
64 exdistrv 1922 . . . . . . . . 9  |-  ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
65642rexbii 2499 . . . . . . . 8  |-  ( E. m  e.  NN  E. w  e.  NN  E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  E. m  e.  NN  E. w  e.  NN  ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
66 oveq2 5903 . . . . . . . . . . . . . 14  |-  ( m  =  w  ->  (
1 ... m )  =  ( 1 ... w
) )
6766f1oeq2d 5476 . . . . . . . . . . . . 13  |-  ( m  =  w  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... w
)
-1-1-onto-> A ) )
68 fveq2 5534 . . . . . . . . . . . . . 14  |-  ( m  =  w  ->  (  seq 1 (  x.  ,  G ) `  m
)  =  (  seq 1 (  x.  ,  G ) `  w
) )
6968eqeq2d 2201 . . . . . . . . . . . . 13  |-  ( m  =  w  ->  (
z  =  (  seq 1 (  x.  ,  G ) `  m
)  <->  z  =  (  seq 1 (  x.  ,  G ) `  w ) ) )
7067, 69anbi12d 473 . . . . . . . . . . . 12  |-  ( m  =  w  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  ( f : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `
 w ) ) ) )
7170exbidv 1836 . . . . . . . . . . 11  |-  ( m  =  w  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  w ) ) ) )
72 f1oeq1 5468 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
f : ( 1 ... w ) -1-1-onto-> A  <->  g :
( 1 ... w
)
-1-1-onto-> A ) )
73 fveq1 5533 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  g  ->  (
f `  j )  =  ( g `  j ) )
7473csbeq1d 3079 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  g  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( g `  j )  /  k ]_ B )
7574ifeq1d 3566 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  g  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) )
7675mpteq2dv 4109 . . . . . . . . . . . . . . . . 17  |-  ( f  =  g  ->  (
j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
g `  j )  /  k ]_ B ,  1 ) ) )
7753, 76eqtrid 2234 . . . . . . . . . . . . . . . 16  |-  ( f  =  g  ->  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) )
7877seqeq3d 10483 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  seq 1 (  x.  ,  G )  =  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) )
7978fveq1d 5536 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  (  seq 1 (  x.  ,  G ) `  w
)  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) `  w
) )
8079eqeq2d 2201 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
z  =  (  seq 1 (  x.  ,  G ) `  w
)  <->  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )
8172, 80anbi12d 473 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( f : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  w ) )  <->  ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
g `  j )  /  k ]_ B ,  1 ) ) ) `  w ) ) ) )
8281cbvexvw 1932 . . . . . . . . . . 11  |-  ( E. f ( f : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  w ) )  <->  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )
8371, 82bitrdi 196 . . . . . . . . . 10  |-  ( m  =  w  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
8483cbvrexvw 2723 . . . . . . . . 9  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. w  e.  NN  E. g ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) `  w
) ) )
8584anbi2i 457 . . . . . . . 8  |-  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  <-> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) )  /\  E. w  e.  NN  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
8663, 65, 853bitr4i 212 . . . . . . 7  |-  ( E. m  e.  NN  E. w  e.  NN  E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
87 an4 586 . . . . . . . . . 10  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  <->  ( (
f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w ) -1-1-onto-> A )  /\  (
x  =  (  seq 1 (  x.  ,  G ) `  m
)  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) ) )
8824ad4ant14 514 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
89 breq1 4021 . . . . . . . . . . . . . . . 16  |-  ( j  =  a  ->  (
j  <_  ( `  A
)  <->  a  <_  ( `  A ) ) )
90 fveq2 5534 . . . . . . . . . . . . . . . . 17  |-  ( j  =  a  ->  (
f `  j )  =  ( f `  a ) )
9190csbeq1d 3079 . . . . . . . . . . . . . . . 16  |-  ( j  =  a  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( f `  a )  /  k ]_ B )
9289, 91ifbieq1d 3571 . . . . . . . . . . . . . . 15  |-  ( j  =  a  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( a  <_  ( `  A ) ,  [_ ( f `  a )  /  k ]_ B ,  1 ) )
9392cbvmptv 4114 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
f `  j )  /  k ]_ B ,  1 ) )  =  ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  [_ ( f `  a )  /  k ]_ B ,  1 ) )
9453, 93eqtri 2210 . . . . . . . . . . . . 13  |-  G  =  ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  [_ ( f `  a
)  /  k ]_ B ,  1 ) )
95 fveq2 5534 . . . . . . . . . . . . . . . 16  |-  ( j  =  a  ->  (
g `  j )  =  ( g `  a ) )
9695csbeq1d 3079 . . . . . . . . . . . . . . 15  |-  ( j  =  a  ->  [_ (
g `  j )  /  k ]_ B  =  [_ ( g `  a )  /  k ]_ B )
9789, 96ifbieq1d 3571 . . . . . . . . . . . . . 14  |-  ( j  =  a  ->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 )  =  if ( a  <_  ( `  A ) ,  [_ ( g `  a )  /  k ]_ B ,  1 ) )
9897cbvmptv 4114 . . . . . . . . . . . . 13  |-  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
g `  j )  /  k ]_ B ,  1 ) )  =  ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  [_ ( g `  a )  /  k ]_ B ,  1 ) )
99 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
( m  e.  NN  /\  w  e.  NN ) )
100 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
101 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
g : ( 1 ... w ) -1-1-onto-> A )
10223, 88, 94, 98, 99, 100, 101prodmodclem3 11614 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
(  seq 1 (  x.  ,  G ) `  m )  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) )
103 eqeq12 2202 . . . . . . . . . . . 12  |-  ( ( x  =  (  seq 1 (  x.  ,  G ) `  m
)  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) )  ->  (
x  =  z  <->  (  seq 1 (  x.  ,  G ) `  m
)  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) `  w
) ) )
104102, 103syl5ibrcom 157 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
( ( x  =  (  seq 1 (  x.  ,  G ) `
 m )  /\  z  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j
)  /  k ]_ B ,  1 ) ) ) `  w
) )  ->  x  =  z ) )
105104expimpd 363 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A )  /\  (
x  =  (  seq 1 (  x.  ,  G ) `  m
)  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  ->  x  =  z )
)
10687, 105biimtrid 152 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  ->  x  =  z )
)
107106exlimdvv 1909 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  -> 
( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  ->  x  =  z )
)
108107rexlimdvva 2615 . . . . . . 7  |-  ( ph  ->  ( E. m  e.  NN  E. w  e.  NN  E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) ) ) `  w
) ) )  ->  x  =  z )
)
10986, 108biimtrrid 153 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) )  /\  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
110109com12 30 . . . . 5  |-  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  ( ph  ->  x  =  z ) )
11152, 59, 62, 110ccase 966 . . . 4  |-  ( ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )  ->  ( ph  ->  x  =  z ) )
112111com12 30 . . 3  |-  ( ph  ->  ( ( ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )  ->  x  =  z ) )
113112alrimivv 1886 . 2  |-  ( ph  ->  A. x A. z
( ( ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )  ->  x  =  z ) )
114 breq2 4022 . . . . . . 7  |-  ( x  =  z  ->  (  seq m (  x.  ,  F )  ~~>  x  <->  seq m
(  x.  ,  F
)  ~~>  z ) )
115114anbi2d 464 . . . . . 6  |-  ( x  =  z  ->  (
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x )  <-> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) )
116115anbi2d 464 . . . . 5  |-  ( x  =  z  ->  (
( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) ) )
117116rexbidv 2491 . . . 4  |-  ( x  =  z  ->  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) ) ) )
118 eqeq1 2196 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  (  seq 1 (  x.  ,  G ) `  m
)  <->  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )
119118anbi2d 464 . . . . . 6  |-  ( x  =  z  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `
 m ) ) ) )
120119exbidv 1836 . . . . 5  |-  ( x  =  z  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
121120rexbidv 2491 . . . 4  |-  ( x  =  z  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )
122117, 121orbi12d 794 . . 3  |-  ( x  =  z  ->  (
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) ) )
123122mo4 2099 . 2  |-  ( E* x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  <->  A. x A. z ( ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  z ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )  ->  x  =  z ) )
124113, 123sylibr 134 1  |-  ( ph  ->  E* x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980   A.wal 1362    = wceq 1364   E.wex 1503   E*wmo 2039    e. wcel 2160   A.wral 2468   E.wrex 2469   [_csb 3072    C_ wss 3144   ifcif 3549   class class class wbr 4018    |-> cmpt 4079   -1-1-onto->wf1o 5234   ` cfv 5235  (class class class)co 5895   CCcc 7838   0cc0 7840   1c1 7841    x. cmul 7845    <_ cle 8022   # cap 8567   NNcn 8948   ZZcz 9282   ZZ>=cuz 9557   ...cfz 10037    seqcseq 10475  ♯chash 10786    ~~> cli 11317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-frec 6415  df-1o 6440  df-oadd 6444  df-er 6558  df-en 6766  df-dom 6767  df-fin 6768  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-q 9649  df-rp 9683  df-fz 10038  df-fzo 10172  df-seqfrec 10476  df-exp 10550  df-ihash 10787  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039  df-clim 11318
This theorem is referenced by:  fprodseq  11622
  Copyright terms: Public domain W3C validator