![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpr1 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantl 277 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simplr1 1041 simprr1 1047 simp1r1 1095 simp2r1 1101 simp3r1 1107 3anandis 1358 isopolem 5866 caovlem2d 6113 tfrlemibacc 6381 tfrlemibfn 6383 tfr1onlembacc 6397 tfr1onlembfn 6399 tfrcllembacc 6410 tfrcllembfn 6412 eqsupti 7057 prmuloc2 7629 ltntri 8149 elioc2 10005 elico2 10006 elicc2 10007 fseq1p1m1 10163 elfz0ubfz0 10194 ico0 10333 seq3f1olemp 10589 seq3f1oleml 10590 bcval5 10837 isumss2 11539 tanaddap 11885 dvds2ln 11970 divalglemeunn 12065 divalglemex 12066 divalglemeuneg 12067 qredeq 12237 pcdvdstr 12468 isstructr 12636 mndissubm 13050 grpsubrcan 13156 grpsubadd 13163 grpsubsub 13164 grpaddsubass 13165 grpsubsub4 13168 grpnnncan2 13172 imasgrp2 13183 mulgnndir 13224 mulgnn0dir 13225 mulgdir 13227 mulgnnass 13230 mulgnn0ass 13231 mulgass 13232 mulgsubdir 13235 issubg2m 13262 eqgval 13296 qusgrp 13305 kerf1ghm 13347 cmn32 13377 cmn12 13379 abladdsub 13388 rngass 13438 imasrng 13455 srgass 13470 ringdilem 13511 ringass 13515 imasring 13563 opprrng 13576 opprring 13578 mulgass3 13584 unitgrp 13615 dvrass 13638 dvrdir 13642 subrgunit 13738 issubrg2 13740 aprap 13785 islss3 13878 sralmod 13949 icnpimaex 14390 cnptopresti 14417 upxp 14451 psmettri 14509 isxmet2d 14527 xmettri 14551 metrtri 14556 xmetres2 14558 bldisj 14580 blss2ps 14585 blss2 14586 xmstri2 14649 mstri2 14650 xmstri 14651 mstri 14652 xmstri3 14653 mstri3 14654 msrtri 14655 comet 14678 bdbl 14682 xmetxp 14686 dvconst 14873 dvconstre 14875 dvconstss 14877 findset 15507 |
Copyright terms: Public domain | W3C validator |