| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr1 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr1 1041 simprr1 1047 simp1r1 1095 simp2r1 1101 simp3r1 1107 3anandis 1358 isopolem 5872 caovlem2d 6120 tfrlemibacc 6388 tfrlemibfn 6390 tfr1onlembacc 6404 tfr1onlembfn 6406 tfrcllembacc 6417 tfrcllembfn 6419 eqsupti 7066 prmuloc2 7639 ltntri 8159 elioc2 10016 elico2 10017 elicc2 10018 fseq1p1m1 10174 elfz0ubfz0 10205 ico0 10356 seq3f1olemp 10612 seq3f1oleml 10613 bcval5 10860 isumss2 11563 tanaddap 11909 dvds2ln 11994 divalglemeunn 12091 divalglemex 12092 divalglemeuneg 12093 qredeq 12277 pcdvdstr 12509 isstructr 12706 mndissubm 13154 grpsubrcan 13260 grpsubadd 13267 grpsubsub 13268 grpaddsubass 13269 grpsubsub4 13272 grpnnncan2 13276 imasgrp2 13287 mulgnndir 13328 mulgnn0dir 13329 mulgdir 13331 mulgnnass 13334 mulgnn0ass 13335 mulgass 13336 mulgsubdir 13339 issubg2m 13366 eqgval 13400 qusgrp 13409 kerf1ghm 13451 cmn32 13481 cmn12 13483 abladdsub 13492 rngass 13542 imasrng 13559 srgass 13574 ringdilem 13615 ringass 13619 imasring 13667 opprrng 13680 opprring 13682 mulgass3 13688 unitgrp 13719 dvrass 13742 dvrdir 13746 subrgunit 13842 issubrg2 13844 aprap 13889 islss3 13982 sralmod 14053 icnpimaex 14494 cnptopresti 14521 upxp 14555 psmettri 14613 isxmet2d 14631 xmettri 14655 metrtri 14660 xmetres2 14662 bldisj 14684 blss2ps 14689 blss2 14690 xmstri2 14753 mstri2 14754 xmstri 14755 mstri 14756 xmstri3 14757 mstri3 14758 msrtri 14759 comet 14782 bdbl 14786 xmetxp 14790 dvconst 14977 dvconstre 14979 dvconstss 14981 sgmmul 15279 findset 15638 |
| Copyright terms: Public domain | W3C validator |