Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpr1 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 987 | . 2 | |
2 | 1 | adantl 275 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simplr1 1029 simprr1 1035 simp1r1 1083 simp2r1 1089 simp3r1 1095 3anandis 1337 isopolem 5789 caovlem2d 6030 tfrlemibacc 6290 tfrlemibfn 6292 tfr1onlembacc 6306 tfr1onlembfn 6308 tfrcllembacc 6319 tfrcllembfn 6321 eqsupti 6957 prmuloc2 7504 ltntri 8022 elioc2 9868 elico2 9869 elicc2 9870 fseq1p1m1 10025 elfz0ubfz0 10056 ico0 10193 seq3f1olemp 10433 seq3f1oleml 10434 bcval5 10672 isumss2 11330 tanaddap 11676 dvds2ln 11760 divalglemeunn 11854 divalglemex 11855 divalglemeuneg 11856 qredeq 12024 pcdvdstr 12254 isstructr 12405 icnpimaex 12811 cnptopresti 12838 upxp 12872 psmettri 12930 isxmet2d 12948 xmettri 12972 metrtri 12977 xmetres2 12979 bldisj 13001 blss2ps 13006 blss2 13007 xmstri2 13070 mstri2 13071 xmstri 13072 mstri 13073 xmstri3 13074 mstri3 13075 msrtri 13076 comet 13099 bdbl 13103 xmetxp 13107 dvconst 13261 findset 13787 |
Copyright terms: Public domain | W3C validator |