| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr1 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr1 1041 simprr1 1047 simp1r1 1095 simp2r1 1101 simp3r1 1107 3anandis 1358 isopolem 5872 caovlem2d 6120 tfrlemibacc 6393 tfrlemibfn 6395 tfr1onlembacc 6409 tfr1onlembfn 6411 tfrcllembacc 6422 tfrcllembfn 6424 eqsupti 7071 prmuloc2 7653 ltntri 8173 elioc2 10030 elico2 10031 elicc2 10032 fseq1p1m1 10188 elfz0ubfz0 10219 ico0 10370 seq3f1olemp 10626 seq3f1oleml 10627 bcval5 10874 isumss2 11577 tanaddap 11923 dvds2ln 12008 divalglemeunn 12105 divalglemex 12106 divalglemeuneg 12107 qredeq 12291 pcdvdstr 12523 isstructr 12720 prdssgrpd 13119 prdsmndd 13152 imasmnd2 13156 mndissubm 13179 grpsubrcan 13285 grpsubadd 13292 grpsubsub 13293 grpaddsubass 13294 grpsubsub4 13297 grpnnncan2 13301 imasgrp2 13318 mulgnndir 13359 mulgnn0dir 13360 mulgdir 13362 mulgnnass 13365 mulgnn0ass 13366 mulgass 13367 mulgsubdir 13370 issubg2m 13397 eqgval 13431 qusgrp 13440 kerf1ghm 13482 cmn32 13512 cmn12 13514 abladdsub 13523 rngass 13573 imasrng 13590 srgass 13605 ringdilem 13646 ringass 13650 imasring 13698 opprrng 13711 opprring 13713 mulgass3 13719 unitgrp 13750 dvrass 13773 dvrdir 13777 subrgunit 13873 issubrg2 13875 aprap 13920 islss3 14013 sralmod 14084 icnpimaex 14555 cnptopresti 14582 upxp 14616 psmettri 14674 isxmet2d 14692 xmettri 14716 metrtri 14721 xmetres2 14723 bldisj 14745 blss2ps 14750 blss2 14751 xmstri2 14814 mstri2 14815 xmstri 14816 mstri 14817 xmstri3 14818 mstri3 14819 msrtri 14820 comet 14843 bdbl 14847 xmetxp 14851 dvconst 15038 dvconstre 15040 dvconstss 15042 sgmmul 15340 findset 15699 |
| Copyright terms: Public domain | W3C validator |