![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpr1 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 998 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantl 277 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 981 |
This theorem is referenced by: simplr1 1040 simprr1 1046 simp1r1 1094 simp2r1 1100 simp3r1 1106 3anandis 1357 isopolem 5836 caovlem2d 6081 tfrlemibacc 6341 tfrlemibfn 6343 tfr1onlembacc 6357 tfr1onlembfn 6359 tfrcllembacc 6370 tfrcllembfn 6372 eqsupti 7009 prmuloc2 7580 ltntri 8099 elioc2 9950 elico2 9951 elicc2 9952 fseq1p1m1 10108 elfz0ubfz0 10139 ico0 10276 seq3f1olemp 10516 seq3f1oleml 10517 bcval5 10757 isumss2 11415 tanaddap 11761 dvds2ln 11845 divalglemeunn 11940 divalglemex 11941 divalglemeuneg 11942 qredeq 12110 pcdvdstr 12340 isstructr 12491 mndissubm 12888 grpsubrcan 12978 grpsubadd 12985 grpsubsub 12986 grpaddsubass 12987 grpsubsub4 12990 grpnnncan2 12994 imasgrp2 13005 mulgnndir 13044 mulgnn0dir 13045 mulgdir 13047 mulgnnass 13050 mulgnn0ass 13051 mulgass 13052 mulgsubdir 13055 issubg2m 13081 eqgval 13115 cmn32 13141 cmn12 13143 abladdsub 13152 rngass 13191 imasrng 13208 srgass 13223 ringdilem 13264 ringass 13268 imasring 13312 opprrng 13325 opprring 13327 mulgass3 13333 unitgrp 13364 dvrass 13387 dvrdir 13391 subrgunit 13459 issubrg2 13461 aprap 13475 islss3 13568 sralmod 13639 icnpimaex 14007 cnptopresti 14034 upxp 14068 psmettri 14126 isxmet2d 14144 xmettri 14168 metrtri 14173 xmetres2 14175 bldisj 14197 blss2ps 14202 blss2 14203 xmstri2 14266 mstri2 14267 xmstri 14268 mstri 14269 xmstri3 14270 mstri3 14271 msrtri 14272 comet 14295 bdbl 14299 xmetxp 14303 dvconst 14457 findset 14993 |
Copyright terms: Public domain | W3C validator |