ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truorfal Unicode version

Theorem truorfal 1406
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truorfal  |-  ( ( T.  \/ F.  )  <-> T.  )

Proof of Theorem truorfal
StepHypRef Expression
1 tru 1357 . . 3  |- T.
21orci 731 . 2  |-  ( T.  \/ F.  )
32bitru 1365 1  |-  ( ( T.  \/ F.  )  <-> T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 708   T. wtru 1354   F. wfal 1358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117  df-tru 1356
This theorem is referenced by:  truxorfal  1420
  Copyright terms: Public domain W3C validator