ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xorbi2d Unicode version

Theorem xorbi2d 1375
Description: Deduction joining an equivalence and a left operand to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.)
Hypothesis
Ref Expression
xorbid.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
xorbi2d  |-  ( ph  ->  ( ( th  \/_  ps )  <->  ( th  \/_  ch ) ) )

Proof of Theorem xorbi2d
StepHypRef Expression
1 xorbid.1 . . . 4  |-  ( ph  ->  ( ps  <->  ch )
)
21orbi2d 785 . . 3  |-  ( ph  ->  ( ( th  \/  ps )  <->  ( th  \/  ch ) ) )
31anbi2d 461 . . . 4  |-  ( ph  ->  ( ( th  /\  ps )  <->  ( th  /\  ch ) ) )
43notbid 662 . . 3  |-  ( ph  ->  ( -.  ( th 
/\  ps )  <->  -.  ( th  /\  ch ) ) )
52, 4anbi12d 470 . 2  |-  ( ph  ->  ( ( ( th  \/  ps )  /\  -.  ( th  /\  ps ) )  <->  ( ( th  \/  ch )  /\  -.  ( th  /\  ch ) ) ) )
6 df-xor 1371 . 2  |-  ( ( th  \/_  ps )  <->  ( ( th  \/  ps )  /\  -.  ( th 
/\  ps ) ) )
7 df-xor 1371 . 2  |-  ( ( th  \/_  ch )  <->  ( ( th  \/  ch )  /\  -.  ( th 
/\  ch ) ) )
85, 6, 73bitr4g 222 1  |-  ( ph  ->  ( ( th  \/_  ps )  <->  ( th  \/_  ch ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    \/_ wxo 1370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-xor 1371
This theorem is referenced by:  xorbi12d  1377
  Copyright terms: Public domain W3C validator