| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2d | Unicode version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . . 4
| |
| 2 | 1 | biimpd 144 |
. . 3
|
| 3 | 2 | orim2d 790 |
. 2
|
| 4 | 1 | biimprd 158 |
. . 3
|
| 5 | 4 | orim2d 790 |
. 2
|
| 6 | 3, 5 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1d 793 orbi12d 795 dn1dc 963 xorbi2d 1400 eueq2dc 2953 r19.44mv 3563 rexprg 3695 rextpg 3697 exmidsssn 4262 exmidsssnc 4263 swopolem 4370 sowlin 4385 elsucg 4469 elsuc2g 4470 ordsoexmid 4628 poleloe 5101 funopsn 5785 isosolem 5916 freceq2 6502 brdifun 6670 pitric 7469 elinp 7622 prloc 7639 ltexprlemloc 7755 suplocexprlemloc 7869 ltsosr 7912 aptisr 7927 suplocsrlemb 7954 axpre-ltwlin 8031 axpre-suploclemres 8049 axpre-suploc 8050 gt0add 8681 apreap 8695 apreim 8711 elznn0 9422 elznn 9423 peano2z 9443 zindd 9526 elfzp1 10229 fzm1 10257 fzosplitsni 10401 cjap 11332 dvdslelemd 12269 zeo5 12314 lcmval 12500 lcmneg 12511 lcmass 12522 isprm6 12584 infpn2 12942 lringuplu 14073 domneq0 14149 znidom 14534 dedekindeulemloc 15206 dedekindeulemeu 15209 suplociccreex 15211 dedekindicclemloc 15215 dedekindicclemeu 15218 bj-charfunr 15945 bj-nn0sucALT 16113 |
| Copyright terms: Public domain | W3C validator |