| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2d | Unicode version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . . 4
| |
| 2 | 1 | biimpd 144 |
. . 3
|
| 3 | 2 | orim2d 790 |
. 2
|
| 4 | 1 | biimprd 158 |
. . 3
|
| 5 | 4 | orim2d 790 |
. 2
|
| 6 | 3, 5 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1d 793 orbi12d 795 dn1dc 963 xorbi2d 1400 eueq2dc 2946 r19.44mv 3555 rexprg 3685 rextpg 3687 exmidsssn 4247 exmidsssnc 4248 swopolem 4353 sowlin 4368 elsucg 4452 elsuc2g 4453 ordsoexmid 4611 poleloe 5083 funopsn 5764 isosolem 5895 freceq2 6481 brdifun 6649 pitric 7436 elinp 7589 prloc 7606 ltexprlemloc 7722 suplocexprlemloc 7836 ltsosr 7879 aptisr 7894 suplocsrlemb 7921 axpre-ltwlin 7998 axpre-suploclemres 8016 axpre-suploc 8017 gt0add 8648 apreap 8662 apreim 8678 elznn0 9389 elznn 9390 peano2z 9410 zindd 9493 elfzp1 10196 fzm1 10224 fzosplitsni 10366 cjap 11250 dvdslelemd 12187 zeo5 12232 lcmval 12418 lcmneg 12429 lcmass 12440 isprm6 12502 infpn2 12860 lringuplu 13991 domneq0 14067 znidom 14452 dedekindeulemloc 15124 dedekindeulemeu 15127 suplociccreex 15129 dedekindicclemloc 15133 dedekindicclemeu 15136 bj-charfunr 15783 bj-nn0sucALT 15951 |
| Copyright terms: Public domain | W3C validator |