![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2d | Unicode version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orbi2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpd 144 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | orim2d 789 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1 | biimprd 158 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | orim2d 789 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | impbid 129 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1d 792 orbi12d 794 dn1dc 962 xorbi2d 1391 eueq2dc 2925 r19.44mv 3532 rexprg 3659 rextpg 3661 exmidsssn 4220 exmidsssnc 4221 swopolem 4323 sowlin 4338 elsucg 4422 elsuc2g 4423 ordsoexmid 4579 poleloe 5046 isosolem 5846 freceq2 6419 brdifun 6587 pitric 7351 elinp 7504 prloc 7521 ltexprlemloc 7637 suplocexprlemloc 7751 ltsosr 7794 aptisr 7809 suplocsrlemb 7836 axpre-ltwlin 7913 axpre-suploclemres 7931 axpre-suploc 7932 gt0add 8561 apreap 8575 apreim 8591 elznn0 9299 elznn 9300 peano2z 9320 zindd 9402 elfzp1 10104 fzm1 10132 fzosplitsni 10267 cjap 10950 dvdslelemd 11884 zeo5 11928 lcmval 12098 lcmneg 12109 lcmass 12120 isprm6 12182 infpn2 12510 lringuplu 13560 dedekindeulemloc 14574 dedekindeulemeu 14577 suplociccreex 14579 dedekindicclemloc 14583 dedekindicclemeu 14586 bj-charfunr 15040 bj-nn0sucALT 15208 |
Copyright terms: Public domain | W3C validator |