![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2d | Unicode version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orbi2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpd 144 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | orim2d 789 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1 | biimprd 158 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | orim2d 789 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | impbid 129 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1d 792 orbi12d 794 dn1dc 962 xorbi2d 1391 eueq2dc 2933 r19.44mv 3541 rexprg 3670 rextpg 3672 exmidsssn 4231 exmidsssnc 4232 swopolem 4336 sowlin 4351 elsucg 4435 elsuc2g 4436 ordsoexmid 4594 poleloe 5065 isosolem 5867 freceq2 6446 brdifun 6614 pitric 7381 elinp 7534 prloc 7551 ltexprlemloc 7667 suplocexprlemloc 7781 ltsosr 7824 aptisr 7839 suplocsrlemb 7866 axpre-ltwlin 7943 axpre-suploclemres 7961 axpre-suploc 7962 gt0add 8592 apreap 8606 apreim 8622 elznn0 9332 elznn 9333 peano2z 9353 zindd 9435 elfzp1 10138 fzm1 10166 fzosplitsni 10302 cjap 11050 dvdslelemd 11985 zeo5 12029 lcmval 12201 lcmneg 12212 lcmass 12223 isprm6 12285 infpn2 12613 lringuplu 13692 domneq0 13768 znidom 14145 dedekindeulemloc 14773 dedekindeulemeu 14776 suplociccreex 14778 dedekindicclemloc 14782 dedekindicclemeu 14785 bj-charfunr 15302 bj-nn0sucALT 15470 |
Copyright terms: Public domain | W3C validator |