![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2d | Unicode version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orbi2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpd 144 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | orim2d 788 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1 | biimprd 158 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | orim2d 788 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | impbid 129 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1d 791 orbi12d 793 dn1dc 960 xorbi2d 1380 eueq2dc 2912 r19.44mv 3519 rexprg 3646 rextpg 3648 exmidsssn 4204 exmidsssnc 4205 swopolem 4307 sowlin 4322 elsucg 4406 elsuc2g 4407 ordsoexmid 4563 poleloe 5030 isosolem 5827 freceq2 6396 brdifun 6564 pitric 7322 elinp 7475 prloc 7492 ltexprlemloc 7608 suplocexprlemloc 7722 ltsosr 7765 aptisr 7780 suplocsrlemb 7807 axpre-ltwlin 7884 axpre-suploclemres 7902 axpre-suploc 7903 gt0add 8532 apreap 8546 apreim 8562 elznn0 9270 elznn 9271 peano2z 9291 zindd 9373 elfzp1 10074 fzm1 10102 fzosplitsni 10237 cjap 10917 dvdslelemd 11851 zeo5 11895 lcmval 12065 lcmneg 12076 lcmass 12087 isprm6 12149 infpn2 12459 lringuplu 13342 dedekindeulemloc 14182 dedekindeulemeu 14185 suplociccreex 14187 dedekindicclemloc 14191 dedekindicclemeu 14194 bj-charfunr 14647 bj-nn0sucALT 14815 |
Copyright terms: Public domain | W3C validator |