Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi2d | Unicode version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 |
Ref | Expression |
---|---|
orbi2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . . 4 | |
2 | 1 | biimpd 144 | . . 3 |
3 | 2 | orim2d 788 | . 2 |
4 | 1 | biimprd 158 | . . 3 |
5 | 4 | orim2d 788 | . 2 |
6 | 3, 5 | impbid 129 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1d 791 orbi12d 793 dn1dc 960 xorbi2d 1380 eueq2dc 2908 r19.44mv 3515 rexprg 3641 rextpg 3643 exmidsssn 4197 exmidsssnc 4198 swopolem 4299 sowlin 4314 elsucg 4398 elsuc2g 4399 ordsoexmid 4555 poleloe 5020 isosolem 5815 freceq2 6384 brdifun 6552 pitric 7295 elinp 7448 prloc 7465 ltexprlemloc 7581 suplocexprlemloc 7695 ltsosr 7738 aptisr 7753 suplocsrlemb 7780 axpre-ltwlin 7857 axpre-suploclemres 7875 axpre-suploc 7876 gt0add 8504 apreap 8518 apreim 8534 elznn0 9239 elznn 9240 peano2z 9260 zindd 9342 elfzp1 10040 fzm1 10068 fzosplitsni 10203 cjap 10881 dvdslelemd 11814 zeo5 11858 lcmval 12028 lcmneg 12039 lcmass 12050 isprm6 12112 infpn2 12422 dedekindeulemloc 13648 dedekindeulemeu 13651 suplociccreex 13653 dedekindicclemloc 13657 dedekindicclemeu 13660 bj-charfunr 14102 bj-nn0sucALT 14270 |
Copyright terms: Public domain | W3C validator |