| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2d | Unicode version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . . 4
| |
| 2 | 1 | biimpd 144 |
. . 3
|
| 3 | 2 | orim2d 793 |
. 2
|
| 4 | 1 | biimprd 158 |
. . 3
|
| 5 | 4 | orim2d 793 |
. 2
|
| 6 | 3, 5 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1d 796 orbi12d 798 dn1dc 966 xorbi2d 1422 eueq2dc 2976 r19.44mv 3586 rexprg 3718 rextpg 3720 exmidsssn 4286 exmidsssnc 4287 swopolem 4396 sowlin 4411 elsucg 4495 elsuc2g 4496 ordsoexmid 4654 poleloe 5128 funopsn 5817 isosolem 5948 freceq2 6539 brdifun 6707 pitric 7508 elinp 7661 prloc 7678 ltexprlemloc 7794 suplocexprlemloc 7908 ltsosr 7951 aptisr 7966 suplocsrlemb 7993 axpre-ltwlin 8070 axpre-suploclemres 8088 axpre-suploc 8089 gt0add 8720 apreap 8734 apreim 8750 elznn0 9461 elznn 9462 peano2z 9482 zindd 9565 elfzp1 10268 fzm1 10296 fzosplitsni 10441 cjap 11417 dvdslelemd 12354 zeo5 12399 lcmval 12585 lcmneg 12596 lcmass 12607 isprm6 12669 infpn2 13027 lringuplu 14160 domneq0 14236 znidom 14621 dedekindeulemloc 15293 dedekindeulemeu 15296 suplociccreex 15298 dedekindicclemloc 15302 dedekindicclemeu 15305 bj-charfunr 16173 bj-nn0sucALT 16341 |
| Copyright terms: Public domain | W3C validator |