| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2d | Unicode version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . . 4
| |
| 2 | 1 | biimpd 144 |
. . 3
|
| 3 | 2 | orim2d 790 |
. 2
|
| 4 | 1 | biimprd 158 |
. . 3
|
| 5 | 4 | orim2d 790 |
. 2
|
| 6 | 3, 5 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1d 793 orbi12d 795 dn1dc 963 xorbi2d 1400 eueq2dc 2946 r19.44mv 3555 rexprg 3685 rextpg 3687 exmidsssn 4246 exmidsssnc 4247 swopolem 4352 sowlin 4367 elsucg 4451 elsuc2g 4452 ordsoexmid 4610 poleloe 5082 funopsn 5762 isosolem 5893 freceq2 6479 brdifun 6647 pitric 7434 elinp 7587 prloc 7604 ltexprlemloc 7720 suplocexprlemloc 7834 ltsosr 7877 aptisr 7892 suplocsrlemb 7919 axpre-ltwlin 7996 axpre-suploclemres 8014 axpre-suploc 8015 gt0add 8646 apreap 8660 apreim 8676 elznn0 9387 elznn 9388 peano2z 9408 zindd 9491 elfzp1 10194 fzm1 10222 fzosplitsni 10364 cjap 11217 dvdslelemd 12154 zeo5 12199 lcmval 12385 lcmneg 12396 lcmass 12407 isprm6 12469 infpn2 12827 lringuplu 13958 domneq0 14034 znidom 14419 dedekindeulemloc 15091 dedekindeulemeu 15094 suplociccreex 15096 dedekindicclemloc 15100 dedekindicclemeu 15103 bj-charfunr 15746 bj-nn0sucALT 15914 |
| Copyright terms: Public domain | W3C validator |