| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2d | Unicode version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . . 4
| |
| 2 | 1 | biimpd 144 |
. . 3
|
| 3 | 2 | orim2d 789 |
. 2
|
| 4 | 1 | biimprd 158 |
. . 3
|
| 5 | 4 | orim2d 789 |
. 2
|
| 6 | 3, 5 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1d 792 orbi12d 794 dn1dc 962 xorbi2d 1391 eueq2dc 2937 r19.44mv 3546 rexprg 3675 rextpg 3677 exmidsssn 4236 exmidsssnc 4237 swopolem 4341 sowlin 4356 elsucg 4440 elsuc2g 4441 ordsoexmid 4599 poleloe 5070 isosolem 5874 freceq2 6460 brdifun 6628 pitric 7405 elinp 7558 prloc 7575 ltexprlemloc 7691 suplocexprlemloc 7805 ltsosr 7848 aptisr 7863 suplocsrlemb 7890 axpre-ltwlin 7967 axpre-suploclemres 7985 axpre-suploc 7986 gt0add 8617 apreap 8631 apreim 8647 elznn0 9358 elznn 9359 peano2z 9379 zindd 9461 elfzp1 10164 fzm1 10192 fzosplitsni 10328 cjap 11088 dvdslelemd 12025 zeo5 12070 lcmval 12256 lcmneg 12267 lcmass 12278 isprm6 12340 infpn2 12698 lringuplu 13828 domneq0 13904 znidom 14289 dedekindeulemloc 14939 dedekindeulemeu 14942 suplociccreex 14944 dedekindicclemloc 14948 dedekindicclemeu 14951 bj-charfunr 15540 bj-nn0sucALT 15708 |
| Copyright terms: Public domain | W3C validator |