![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notbid | Unicode version |
Description: Deduction negating both sides of a logical equivalence. (Contributed by NM, 21-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
notbid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
notbid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbid.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprd 156 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | con3d 594 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1 | biimpd 142 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | con3d 594 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | impbid 127 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: notbii 627 stbid 775 dcbid 784 con1biidc 807 pm4.54dc 841 xorbi2d 1314 xorbi1d 1315 pm5.18im 1319 pm5.24dc 1332 neeq1 2264 neeq2 2265 necon3abid 2290 neleq1 2350 neleq2 2351 cdeqnot 2816 ru 2827 sbcng 2867 sbcnel12g 2936 sbcne12g 2937 difjust 2987 eldif 2995 dfdif3 3096 difeq2 3098 disjne 3321 ifbi 3394 prel12 3592 nalset 3937 pwnss 3962 poeq1 4093 pocl 4097 swopo 4100 sotritrieq 4119 tz7.2 4148 regexmidlem1 4315 regexmid 4317 nordeq 4326 nlimsucg 4348 nndceq0 4397 nnregexmid 4400 poinxp 4468 posng 4471 intirr 4776 poirr2 4782 cnvpom 4930 fndmdif 5352 isopolem 5543 poxp 5935 nnmword 6210 brdifun 6252 swoer 6253 2dom 6455 php5 6507 php5dom 6512 findcard2s 6539 supeq3 6606 supeq123d 6607 supmoti 6609 eqsupti 6612 supubti 6615 supsnti 6621 isotilem 6622 isoti 6623 supisolem 6624 supisoex 6625 cnvinfex 6634 cnvti 6635 eqinfti 6636 infvalti 6638 pitric 6801 addnidpig 6816 ltsonq 6878 elinp 6954 prltlu 6967 prdisj 6972 ltexprlemdisj 7086 ltposr 7230 aptisr 7245 axpre-ltirr 7338 axpre-apti 7341 xrlenlt 7472 axapti 7478 lttri3 7486 ltne 7491 leadd1 7829 reapti 7974 lemul1 7988 apirr 8000 apti 8017 lediv1 8242 lemuldiv 8254 lerec 8257 le2msq 8274 suprnubex 8326 suprleubex 8327 avgle1 8566 avgle2 8567 znnnlt1 8708 supinfneg 8992 infsupneg 8993 eluzdc 9006 qapne 9033 xrltne 9187 xleneg 9208 nn0disj 9453 elfzonelfzo 9544 fvinim0ffz 9555 ioo0 9574 ico0 9576 ioc0 9577 flqlt 9593 expeq0 9837 abs00 10338 maxleim 10479 maxabslemval 10482 maxleast 10487 minmax 10500 zeo3 10662 odd2np1 10667 mod2eq1n2dvds 10673 ndvdsadd 10725 fldivndvdslt 10729 zsupcllemstep 10735 zsupcllemex 10736 gcdneg 10767 algcvgblem 10825 lcmneg 10850 isprm3 10894 dvdsnprmd 10901 rpexp 10926 pw2dvdslemn 10937 pw2dvdseu 10940 oddpwdclemxy 10941 oddpwdclemdc 10945 oddpwdc 10946 sqpweven 10947 2sqpwodd 10948 sqne2sq 10949 phiprmpw 10992 oddennn 10999 decidi 11052 uzdcinzz 11055 bj-nalset 11143 bj-nnelirr 11205 nninfsellemeq 11262 |
Copyright terms: Public domain | W3C validator |