ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xornbi Unicode version

Theorem xornbi 1396
Description: A consequence of exclusive or. For decidable propositions this is an equivalence, as seen at xornbidc 1401. (Contributed by Jim Kingdon, 10-Mar-2018.)
Assertion
Ref Expression
xornbi  |-  ( (
ph  \/_  ps )  ->  -.  ( ph  <->  ps )
)

Proof of Theorem xornbi
StepHypRef Expression
1 xorbin 1394 . 2  |-  ( (
ph  \/_  ps )  ->  ( ph  <->  -.  ps )
)
2 pm5.18im 1395 . . 3  |-  ( (
ph 
<->  ps )  ->  -.  ( ph  <->  -.  ps )
)
32con2i 628 . 2  |-  ( (
ph 
<->  -.  ps )  ->  -.  ( ph  <->  ps )
)
41, 3syl 14 1  |-  ( (
ph  \/_  ps )  ->  -.  ( ph  <->  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/_ wxo 1385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-xor 1386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator