ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xornbi Unicode version

Theorem xornbi 1376
Description: A consequence of exclusive or. For decidable propositions this is an equivalence, as seen at xornbidc 1381. (Contributed by Jim Kingdon, 10-Mar-2018.)
Assertion
Ref Expression
xornbi  |-  ( (
ph  \/_  ps )  ->  -.  ( ph  <->  ps )
)

Proof of Theorem xornbi
StepHypRef Expression
1 xorbin 1374 . 2  |-  ( (
ph  \/_  ps )  ->  ( ph  <->  -.  ps )
)
2 pm5.18im 1375 . . 3  |-  ( (
ph 
<->  ps )  ->  -.  ( ph  <->  -.  ps )
)
32con2i 617 . 2  |-  ( (
ph 
<->  -.  ps )  ->  -.  ( ph  <->  ps )
)
41, 3syl 14 1  |-  ( (
ph  \/_  ps )  ->  -.  ( ph  <->  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/_ wxo 1365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-xor 1366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator