Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xor3dc | Unicode version |
Description: Two ways to express "exclusive or" between decidable propositions. (Contributed by Jim Kingdon, 12-Apr-2018.) |
Ref | Expression |
---|---|
xor3dc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcn 832 | . . . . . 6 DECID DECID | |
2 | dcbi 926 | . . . . . 6 DECID DECID DECID | |
3 | 1, 2 | syl5 32 | . . . . 5 DECID DECID DECID |
4 | 3 | imp 123 | . . . 4 DECID DECID DECID |
5 | pm5.18dc 873 | . . . . . . 7 DECID DECID | |
6 | 5 | imp 123 | . . . . . 6 DECID DECID |
7 | 6 | a1d 22 | . . . . 5 DECID DECID DECID |
8 | 7 | con2biddc 870 | . . . 4 DECID DECID DECID |
9 | 4, 8 | mpd 13 | . . 3 DECID DECID |
10 | 9 | bicomd 140 | . 2 DECID DECID |
11 | 10 | ex 114 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: pm5.15dc 1379 xor2dc 1380 nbbndc 1384 |
Copyright terms: Public domain | W3C validator |