ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xornbi GIF version

Theorem xornbi 1397
Description: A consequence of exclusive or. For decidable propositions this is an equivalence, as seen at xornbidc 1402. (Contributed by Jim Kingdon, 10-Mar-2018.)
Assertion
Ref Expression
xornbi ((𝜑𝜓) → ¬ (𝜑𝜓))

Proof of Theorem xornbi
StepHypRef Expression
1 xorbin 1395 . 2 ((𝜑𝜓) → (𝜑 ↔ ¬ 𝜓))
2 pm5.18im 1396 . . 3 ((𝜑𝜓) → ¬ (𝜑 ↔ ¬ 𝜓))
32con2i 628 . 2 ((𝜑 ↔ ¬ 𝜓) → ¬ (𝜑𝜓))
41, 3syl 14 1 ((𝜑𝜓) → ¬ (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wxo 1386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-xor 1387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator